A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Three years of insecticide resistance evolution and associated mechanisms in Aedes aegypti populations of Ouagadougou, Burkina Faso. | LitMetric

Background: Resistance to insecticides is spreading among populations of Aedes aegypti, the primary vector of important human arboviruses. The escalating insecticide resistance poses a significant threat to dengue vector control, with an expanding number of countries affected by the disease. To gain a deeper insight into the evolution of insecticide resistance, it is essential to have longitudinal surveillance results, which are currently lacking, particularly from African Ae. aegypti populations. Here we report on three-years of surveillance of Ae. aegypti susceptibility to insecticide resistance phenotypes and associated kdr mutations in Burkina Faso, a country with regular dengue outbreaks.

Methods: Ae. aegypti susceptibility to insecticides and the V410L, V1016I, and F1534C kdr target site mutations linked to pyrethroid insecticide resistance were monitored in Ouagadougou from 2016 to 2018. Larvae were collected from artificial containers at two sites and reared to adulthood in an insectary. Bioassays were conducted on female adults, along with a laboratory-susceptible strain, following standard WHO protocols. Allele-specific PCR genotyping assays were utilized to identify the V410L, V1016I, and F1534C kdr pyrethroid target site mutations.

Results: Bioassays revealed a high level of resistance to permethrin and deltamethrin that progressively increased over the three-year period in both localities. The 1534C mutation was nearly fixed throughout the three years at each locality, and while the closely-related 410L and 1016I mutations did not vary between localities, their frequency notably increased from 2016 to 2018. Interestingly, Ae. aegypti populations in both areas remained susceptible to bendiocarb, fenitrothion, and malathion. Modelling the mortality data further confirmed the escalating resistance trend over the years and emphasized the significant role played by the three kdr mutations in conferring resistance to pyrethroids.

Conclusion: Mortality rates indicate that Ae. aegypti populations from Ouagadougou are becoming increasingly resistant to pyrethroid insecticides, likely due to an increase in the frequencies of the 410L and 1016I kdr mutations. Organophosphate insecticides are likely to be better alternative options for control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637278PMC
http://dx.doi.org/10.1371/journal.pntd.0012138DOI Listing

Publication Analysis

Top Keywords

insecticide resistance
20
aegypti populations
16
kdr mutations
12
resistance
9
three years
8
aedes aegypti
8
populations ouagadougou
8
burkina faso
8
aegypti susceptibility
8
v410l v1016i
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!