Input signal accumulation capability of the FitzHugh-Nagumo neuron.

Chaos

Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia.

Published: December 2024

We present numerical results on the effects of two presynaptic FitzHugh-Nagumo neurons on a postsynaptic neuron under unidirectional electrical coupling. The presynaptic neurons affect the postsynaptic neuron not simultaneously but with a certain time shift. We consider cases where the amplitudes of the presynaptic spikes can be both higher and lower than the excitation threshold level. The latter case receives the main attention in our work. We carefully examine the conditions under which the postsynaptic neuron is excited by the two asynchronous external spikes. With arbitrarily chosen parameters, the FitzHugh-Nagumo neuron is almost incapable of accumulating the energy of external signals, unlike, for example, the leaky integrate-and-fire neuron. In this case, the postsynaptic neuron only excites with a very short time delay between external impulses. However, we have discovered, for the first time, a parameter region where neuron excitation is possible even with significant time delays between presynaptic impulses with subthreshold amplitudes. We explain this effect in detail and describe the mechanism behind its occurrence. We identify the boundaries of this region in the parameter plane of time delay and coupling coefficient by varying the control parameter values of the neurons. The FitzHugh-Nagumo neuron has not previously been used as a node in spiking neural networks for training via spike-timing-dependent plasticity due to the lack of an integrate-and-fire effect. However, the detection of a certain range of parameters makes the potential application of this neuron for STDP training possible.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0243083DOI Listing

Publication Analysis

Top Keywords

postsynaptic neuron
16
fitzhugh-nagumo neuron
12
neuron
10
time delay
8
time
5
input signal
4
signal accumulation
4
accumulation capability
4
fitzhugh-nagumo
4
capability fitzhugh-nagumo
4

Similar Publications

In a genome-wide association study (GWAS) meta-analysis of 688,808 individuals with major depression (MD) and 4,364,225 controls from 29 countries across diverse and admixed ancestries, we identify 697 associations at 635 loci, 293 of which are novel. Using fine-mapping and functional tools, we find 308 high-confidence gene associations and enrichment of postsynaptic density and receptor clustering. A neural cell-type enrichment analysis utilizing single-cell data implicates excitatory, inhibitory, and medium spiny neurons and the involvement of amygdala neurons in both mouse and human single-cell analyses.

View Article and Find Full Text PDF

Introduction: Neonatal seizures are the most common clinical manifestation of neurological dysfunction in newborns, with an incidence ranging from 1 to 5‰. However, the therapeutic efficacy of current pharmacological treatments remains suboptimal. This study aims to utilize genetically modified hamsters with hypertriglyceridaemia (HTG) to investigate the effects of elevated triglycerides on neuronal excitability and to elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Background: Neurological dysfunction is a common complication of traumatic brain injury (TBI), and early treatments are critical for the long-term prognosis. This study aimed to investigate whether hypidone hydrochloride (YL-0919) improves neurological function impairment in mice with TBI.

Methods: TBI was induced in adult male C57BL/6J mice using the controlled cortical impact (CCI) method.

View Article and Find Full Text PDF

In-Plane Polarization-Triggered WS-Ferroelectric Heterostructured Synaptic Devices.

ACS Appl Mater Interfaces

January 2025

School of Information Science and Technology, Fudan University, Shanghai 200433, China.

To date, various kinds of memristors have been proposed as artificial neurons and synapses for neuromorphic computing to overcome the so-called von Neumann bottleneck in conventional computing architectures. However, related working principles are mostly ascribed to randomly distributed conductive filaments or traps, which usually lead to high stochasticity and poor uniformity. In this work, a heterostructure with a two-dimensional WS monolayer and a ferroelectric PZT film were demonstrated for memristors and artificial synapses, triggered by in-plane ferroelectric polarization.

View Article and Find Full Text PDF

Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.

Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!