Calcium signaling plays an essential role in integrating plant responses to diverse stimuli and regulating growth and development. While some signaling components and their roles are well-established, such as the ubiquitous calmodulin (CaM) sensor, plants possess a broader repertoire of calcium sensors. Notably, CaM-like proteins (CMLs) represent a poorly characterized class for which interacting partners and biological functions remain largely elusive. Our work investigates the role of Arabidopsis thaliana CML8 that exhibits a unique expression profile in seedlings. A reverse genetic approach revealed a function of CML8 in regulating root growth and hypocotyl elongation. RNA-seq analyses highlighted CML8 association with the regulation of numerous genes involved in growth and brassinosteroid (BR) signaling. Using co-immunoprecipitation experiments, we demonstrated that CML8 interacts with the BR receptor, BRI1, in planta in a ligand-dependent manner. This finding suggests the existence of a novel regulatory step in the BR pathway, involving calcium signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.17179 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11712026 | PMC |
Int J Mol Sci
December 2024
Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
The bHLH (basic Helix-Loop-Helix) transcription factor serves as pivotal controller in plant growth and development. In a previous study, the overexpression of in L. Ailsa Craig (AC) altered the JA (Jasmonic acid) response and endogenous GA (Gibberellic acid) content.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.
Adventitious root (AR) formation in plants originates from non-root organs such as leaves and hypocotyls. Auxin signaling is essential for AR formation, but the roles of other phytohormones are less clear. In , at least two distinct mechanisms can produce ARs, either from hypocotyls as part of the general root architecture or from wounded organs during de novo root regeneration (DNRR).
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China.
In plants, calcium (Ca) serves as an essential nutrient and signaling molecule. Melatonin is a biologically active and multi-functional hormone that plays an important role in improving nutrient use efficiency. However, its involvement in plant responses to Ca deficiency remains largely unexplored.
View Article and Find Full Text PDFPlant Physiol
January 2025
Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
Global climate change leads to the increased occurrence of environmental stress (including drought and heat stress) during the vegetative and reproductive stages of cereal crop development. Thus, more attention should be given to developing new cereal cultivars with improved tolerance to environmental stress. However, during the development of new stress-tolerant cereal cultivars, the balance between improved stress responses (which occur at the expense of growth) and plant yield needs to be maintained.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, India.
Plants frequently confront pathogens that disrupt physiological and molecular functions, ultimately reducing agricultural yields. To counter these challenges, plants activate sophisticated defense mechanisms to recognize stress signals while optimizing growth. Phytohormones signaling pathways and their crosstalk are central to regulating plant growth, development and defense.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!