How to improve AML outcomes?

Blood Res

Department of Hematology, ͣKoc University Medical School, Istanbul, Turkey.

Published: December 2024

Understanding the intricacies of the pathophysiology and genomic landscape has enhanced the long-term outcomes for patients with acute myeloid leukemia (AML). The identification of novel molecular targets has introduced new therapeutic strategies that attempt to surpass the dominance of the "7 + 3 regimen" established in the 1970s. In 2022, the World Health Organization and International Consensus Classification revised their definitions and approaches to AML, reflecting the current and evolving changes at the molecular level. The guidelines are now grounded in a definition of the disease that emphasizes genetic characteristics. Today, we recognize AML as a genetically diverse disease; a retrospective study identified 5234 driver mutations across 76 genes or genomic regions, with two or more drivers observed in 86% of patients (Papaemmanuil et al., N Engl J Med 374:2209-21, 2016).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612101PMC
http://dx.doi.org/10.1007/s44313-024-00041-7DOI Listing

Publication Analysis

Top Keywords

improve aml
4
aml outcomes?
4
outcomes? understanding
4
understanding intricacies
4
intricacies pathophysiology
4
pathophysiology genomic
4
genomic landscape
4
landscape enhanced
4
enhanced long-term
4
long-term outcomes
4

Similar Publications

Bone Marrow Endothelial Progenitor Cells remodelling facilitates normal hematopoiesis during Acute Myeloid Leukemia Complete Remission.

Nat Commun

December 2024

Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.

Although acute myeloid leukemia (AML) affects hematopoietic stem cell (HSC)-supportive microenvironment, it is largely unknown whether leukemia-modified bone marrow (BM) microenvironment can be remodeled to support normal hematopoiesis after complete remission (CR). As a key element of BM microenvironment, endothelial progenitor cells (EPCs) provide a feasible way to investigate BM microenvironment remodeling. Here, we find reduced and dysfunctional BM EPCs in AML patients, characterized by impaired angiogenesis and high ROS levels, could be partially remodeled after CR and improved by N-acetyl-L-cysteine (NAC).

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is a hematologic tumor with poor prognosis and significant clinical heterogeneity. By integrating transcriptomic data, single-cell RNA sequencing data and independently collected RNA sequencing data this study aims to identify key genes in AML and establish a prognostic assessment model to improve the accuracy of prognostic prediction.

Materials And Methods: We analyzed RNA-seq data from AML patients and combined it with single-cell RNA sequencing data to identify genes associated with AML prognosis.

View Article and Find Full Text PDF

Targeting FMS-like tyrosine kinase 3 (FLT3) in acute myeloid leukemia: Novel molecular approaches and therapeutic challenges.

Biomed Pharmacother

December 2024

Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic. Electronic address:

Acute myeloid leukemia (AML), a heterogeneous hematologic malignancy, has generally a poor prognosis despite the recent advancements in diagnostics and treatment. Genetic instability, particularly mutations in the FMS-like tyrosine kinase 3 (FLT3) gene, is associated with severe outcomes. Approximately 30 % of AML patients harbor FLT3 mutations, which have been linked to higher relapse and reduced survival rates.

View Article and Find Full Text PDF

Cytoplasmic proliferating cell nuclear antigen (PCNA) is highly expressed in acute myeloid leukemia (AML) cells, supporting oxidative metabolism and leukemia stem cell (LSC) growth. We report on AOH1996 (AOH), an oral compound targeting cancer-associated PCNA, which shows significant antileukemic activity. AOH inhibited growth in AML cell lines and primary CD34 + CD38 - blasts (LSC-enriched) in vitro while sparing normal hematopoietic stem cells (HSCs).

View Article and Find Full Text PDF

Background: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder characterized by mutations in the TSC1 and TSC2 genes, leading to the dysregulation of the mammalian target of rapamycin (mTOR) pathway. This dysregulation results in the development of benign tumors across multiple organ systems and poses significant neurodevelopmental challenges. The clinical manifestations of TSC vary widely and include subependymal giant cell astrocytomas (SEGAs), renal angiomyolipomas (AMLs), facial angiofibromas (FAs), and neuropsychiatric conditions such as autism spectrum disorder (ASD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!