A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Establishment of Nile Tilapia Primary Cell Culture Methods and In Vitro Cell Knockdown Techniques. | LitMetric

Establishment of Nile Tilapia Primary Cell Culture Methods and In Vitro Cell Knockdown Techniques.

Mar Biotechnol (NY)

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.

Published: December 2024

As an important aquaculture species and research model, Nile tilapia (Oreochromis niloticus) has not yet been systematically studied for the isolation, culture, and in vitro gene manipulation techniques of primary cells from various tissues. This study aimed to explore methods for isolating primary cells from various tissues, as well as developing in vitro gene manipulation techniques in Nile tilapia. Four different Nile tilapia tissues were enzymatically digested and separated using trypsin or collagenase. Collagenase (0.1%) was used for the digestion of the gonads, liver, and heart, while trypsin (0.25%) showed better adhesion efficiency for spleen tissue. Moreover, we assessed EGFP fluorescence intensity and cell survival rates following transfection with empty siRNA (siRNA-NC), lentivirus (LV-NC), and six adeno-associated virus (AAV-NC) serotypes (AAV2-NC, AAV5-NC, AAV6-NC, AAV8-NC, AAV9-NC, AAV-DJ-NC) in gonadal cells. The results demonstrated that cells transfected with siRNA-NC and LV-NC showed the highest levels of green fluorescent protein expression and survival rates in primary gonadal cells, compared to AAC-NC. Subsequently, we knocked down the Kdm6bb gene in Nile tilapia primary gonadal cells by transfecting them with LV-Kdm6bb and siRNA-Kdm6bb. qPCR and immunofluorescence analyses demonstrated a significant reduction in Kdm6bb mRNA levels following transfection with siRNA-Kdm6bb compared to siRNA-NC, and with LV-Kdm6bb compared to LV-NC. This study offers valuable tools for the validation of primary cell isolation and in vitro molecular regulatory mechanisms and functions in Nile tilapia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10126-024-10380-2DOI Listing

Publication Analysis

Top Keywords

nile tilapia
24
gonadal cells
12
tilapia primary
8
primary cell
8
vitro gene
8
gene manipulation
8
manipulation techniques
8
primary cells
8
cells tissues
8
survival rates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!