A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structure-based pharmacophore modelling for ErbB4-kinase inhibition: a systematic computational approach for small molecule drug discovery for breast cancer. | LitMetric

ErbB2 kinase is a key target in approximately 20% of breast cancer cases; however, ErbB2-positive cells may shift their dependence to ErbB4 upon developing resistance to ErbB2 inhibitors. Targeting ErbB4 presents a viable strategy to address this challenge. This study employs a comprehensive approach combining structure-based pharmacophore modelling, molecular docking, and MM-GBSA calculations to identify novel ErbB4 kinase inhibitors. Critical pharmacophoric features were extracted from the crystal structures of ErbB4-lapatinib, followed by virtual screening of the Chembl database to discover potential small molecule candidates. Furthermore, the ADMET profiles of 11 shortlisted candidates were assessed to verify their pharmacokinetic and toxicity properties, identifying Chembl310724, Chembl521284, and Chembl4168686 as promising inhibitors of ErbB4 kinase activity with the binding free energy (ΔG) values of -99.84, -89.42 and -86.06 kcal/mol, respectively. This integrated methodology not only enhances our understanding of ErbB4 inhibition but also sets a foundation for the rational design of targeted therapies addressing breast cancer with ErbB4 dependency.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1062936X.2024.2434565DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
structure-based pharmacophore
8
pharmacophore modelling
8
small molecule
8
erbb4 kinase
8
erbb4
6
modelling erbb4-kinase
4
erbb4-kinase inhibition
4
inhibition systematic
4
systematic computational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!