A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neural Basis of Perceptual Surface Qualities and Materials: Evidence from EEG Decoding. | LitMetric

AI Article Synopsis

  • The study investigates how the human brain perceives material properties like glossiness and smoothness using visual evoked potentials (VEPs) from images of various materials.
  • The results show that material categories and surface properties can be accurately classified from VEPs within 150 to 200 milliseconds after visual stimulus presentation.
  • Additionally, deep learning models demonstrated that surface images reconstructed from VEPs closely matched the original images in terms of perceived material categories and properties, suggesting early neural responses are important for material perception.

Article Abstract

The human visual system can easily recognize object material categories and estimate surface properties such as glossiness and smoothness. Recent psychophysical and computational studies suggest that the material perception depends on global feature statistics. To elucidate dynamic neural representations underlying surface property and material perception in humans, we measured visual evoked potentials (VEPs) for 191 natural images consisting of 20 categories of materials and then classified material categories and surface properties from the VEPs. As a result, we found that material categories were correctly classified by the VEPs even at latencies of 150 msec or less. The apparent surface properties were also significantly classified within 175 msec (lightness, colorfulness, and smoothness) and after 200 msec (glossiness, hardness, and heaviness). The subsequent reverse-correlation analysis revealed that the VEPs at these latencies are highly correlated with low- and high-level global feature statistics of the surface images, indicating that neural activities about such global features are reflected in the VEPs. Moreover, by using deep generative models (multimodal variational autoencoder models) to reconstruct surface images from the VEPs via style information, we demonstrated that the reconstructed surface images are judged by observers to have very similar material categories and surface properties as the original natural surfaces. These results support the notion that neural representations of statistical features in the early cortical response play a crucial role in the perception and recognition of surface materials in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1162/jocn_a_02279DOI Listing

Publication Analysis

Top Keywords

material categories
16
surface properties
16
surface images
12
surface
10
material perception
8
global feature
8
feature statistics
8
neural representations
8
categories surface
8
veps latencies
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!