Lock-in amplifiers are instrumental in the precise measurement of extremely small AC signals within high-noise environments. Traditionally, noise reduction in these instruments relies on infinite impulse response (IIR) filters, which can necessitate prolonged settling times to ensure the acquisition of accurate, statistically independent data. While moving average filters offer faster settling times, their non-monotonic frequency response may not be optimal for noise reduction. Conversely, IIR filters frequently realized as N-pole RC filters exhibit a monotonic frequency response conducive to effective noise reduction. This study presents a hybrid filter architecture that combines a short IIR filter with a longer moving average finite impulse response filter. The objective is to enhance noise reduction as quantified by the filter's equivalent noise bandwidth (ENBW). Theoretical analysis is provided to derive the step response, settling time, frequency response, and ENBW of the hybrid filter configuration. Design methodologies are outlined for hybrid filters that either match the settling time of an N-pole RC filter while achieving a lower ENBW or maintain the ENBW of an N-pole RC filter but with significantly faster settling time. The performance of the hybrid filter is validated through noise measurements of low-value resistors and thermal noise of larger resistors, with results compared to theoretical predictions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0208389 | DOI Listing |
Network
January 2025
Computer Science and Engineering, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, India.
Skin cancer is one of the most prevalent and harmful forms of cancer, with early detection being crucial for successful treatment outcomes. However, current skin cancer detection methods often suffer from limitations such as reliance on manual inspection by clinicians, inconsistency in diagnostic accuracy, and a lack of personalized recommendations based on patient-specific data. In our work, we presented a Personalized Recommendation System to handle Skin Cancer at an early stage based on Hybrid Model (PRSSCHM).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.
View Article and Find Full Text PDFTalanta
January 2025
Daqing Oilfield Shale Oil Exploration and Development Headquarters, Daqing, 163455, China.
Near-infrared (NIR) spectroscopy analysis technology has become a widely utilized analytical tool in various fields due to its convenience and efficiency. However, with the promotion of instrument precision, the spectral dimension can now be expanded to include hundreds of dimensions. This expansion results in time-consuming modeling processes and a decrease in model performance.
View Article and Find Full Text PDFHeliyon
January 2025
John von Neumann Faculty of Informatics, Obuda University, Budapest, Hungary.
Global adoption of wind energy continues to increase, while improving the efficiency of turbine settings requires reliable wind speed (WS) models. The latest models rely on artificial intelligence (AI) optimizations which constructs tests on a range of novel hybrid models to examine the reliability. Gradient Boosting (GB), Random Forest (RF), and Long Short-Term Memory (LSTM) are used in new combinations for data pre-processing.
View Article and Find Full Text PDFAuris Nasus Larynx
January 2025
Department of Otolaryngology, Kameda Medical Hospital, Chiba, Japan.
Objective: The parathyroid gland emits autofluorescence with a peak at 822 nm when excited using near-infrared light at 785 nm; this observation of autofluorescence using a near-infrared detection device is useful for identifying the parathyroid gland during surgery. We aimed to clarify the localization of autofluorescent substances in parathyroid and thyroid tissues by observing them under a fluorescence microscope through filters that selectively pass specific near-infrared wavelengths.
Methods: Four cases of parathyroid and three cases of thyroid were examined under a fluorescence microscope.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!