Retroviral CRISPR/Cas9-Mediated Gene Targeting for the Study of Th17 Differentiation in Vitro.

J Vis Exp

Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine; Institute of Immunology and Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine;

Published: November 2024

Similar Publications

Mechanism of podophyllotoxin-induced ovarian toxicity via the AMPK/TSC1/mTOR/ULK1 axis in rats on the basis of toxicological evidence chain (TEC) concept.

Ecotoxicol Environ Saf

December 2024

Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Key Laboratory of Hereditary Rare Diseases of Health Commission of Henan Province, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China. Electronic address:

Article Synopsis
  • Podophyllotoxin has potential clinical benefits, such as anticancer effects, but its toxicity limits its use in medicine.
  • The research involved creating a rat model to study how podophyllotoxin damages ovaries, revealing symptoms like diarrhea and bruising, alongside significant biochemical and pathological changes.
  • The study found that podophyllotoxin's toxicity is linked to alterations in autophagy, specifically through the AMPK/TSC1/mTOR/ULK1 signaling pathway, providing new insights for its clinical application.
View Article and Find Full Text PDF

Build muscles and protect myelin.

NeuroImmune Pharm Ther

September 2024

Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.

Multiple sclerosis (MS) is a chronic and debilitating autoimmune disease of the central nervous system (CNS) in which a CNS-driven immune response destroys myelin, leading to wide range of symptoms including numbness and tingling, vision problems, mobility impairment, etc. Oligodendrocytes are the myelinating cells in the CNS, which are generated from oligodendroglial progenitor cells (OPCs) via differentiation. However, for multiple reasons, OPCs fail to differentiate to oligodendrocytes in MS and as a result, stimulating the differentiation of OPCs to oligodendrocytes is considered beneficial for MS.

View Article and Find Full Text PDF

Allergen immunotherapy (AIT) is currently the most effective immunologic form of treatment for patients with atopic allergic diseases commonly used by allergist/immunologists to reduce allergic symptoms by gradually desensitizing the immune system to specific allergens. Currently, the primary mechanism of AIT emphasizes the crucial role of immune regulation, which involves a shift from a T-helper type 2 (Th2) cell response, which promotes allergy, to a T-regulatory (Treg) cell population, which inhibits the allergic inflammatory response through the production of immunosuppressive cytokines interleukin 10 and transforming growth factor β, which play pivotal roles in suppressing the allergic reaction. In a series of previous in vitro and in vivo experiments, we have demonstrated the capacity of synthetic methylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotide (ODN) moieties as well as methylated genomic DNA ODN motifs from Bifidobacterium longum subspecies infantis to activate Treg cell differentiation in contrast to the unmethylated ODN moiety, which promotes proinflammatory responses driven by Th17-mediated responses.

View Article and Find Full Text PDF

Background/aim: Regulatory T cells (Tregs) play a crucial role in inflammatory responses by regulating the activity of various immune cells. M2 macrophages induced by IL-10 and TGF-β exhibit anti-inflammatory functions and induce Treg differentiation. Although the beneficial effects of 3-bromo-4,5-dihydroxybenzaldehyde (BDB) on various diseases have been widely reported, the mechanisms, through which it alleviates allergic contact dermatitis (ACD) via Tregs and macrophages, are not well understood.

View Article and Find Full Text PDF

Background: Xiaohua Funing Tang (XHFND) is a decoction formula of traditional Chinese medicine (TCM) and possesses the potential to manage chronic atrophic gastritis (CAG) with liver depression and spleen deficiency (LDSD), but the mechanisms were still unclear.

Purpose: Our aim is to reveal the overall synergistic mechanisms of XHFND against CAG with LDSD.

Methods: Based on a CAG rat model with LDSD, this study combined metabolomics, gut microbiota, and network pharmacology techniques to demonstrate the XHFND mechanisms with multiple components and targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!