Background: Executive control over low-level information processing is impaired proximal to psychosis onset with evidence of recovery over the first year of illness. However, previous studies demonstrating diminished perceptual modulation via attention are complicated by simultaneously impaired perceptual responses. The present study examined the early auditory gamma-band response (EAGBR), a marker of early cortical processing that appears preserved in first-episode psychosis (FEP), and its modulation by attention in a longitudinal FEP sample.

Methods: Magnetoencephalography was recorded from 25 FEP and 32 healthy controls (HC) during active and passive listening conditions in an auditory oddball task at baseline and follow-up (4-12 months) sessions. EAGBR inter-trial phase coherence (ITPC) and evoked power were measured from responses to standard tones. Symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS).

Results: There was no group difference in EAGBR power or ITPC. While EAGBR ITPC increased with attention in HC, this modulation was impaired among FEP. Diminished EAGBR modulation in FEP persisted at longitudinal follow-up. However, among FEP, recovery of EAGBR modulation was associated with reduced PANSS negative scores.

Conclusion: FEP exhibit impaired executive control over the flow of information at the earliest stages of sensory processing within auditory cortex. In contrast to previous work, this deficit was observed despite an intact measure of sensory processing, mitigating potential confounds. Recovery of sensory gain modulation over time was associated with reductions in negative symptoms, highlighting a source of potential resiliency against some of the most debilitating and treatment refractory symptoms in early psychosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650157PMC
http://dx.doi.org/10.1017/S0033291724003052DOI Listing

Publication Analysis

Top Keywords

modulation attention
12
early auditory
8
auditory gamma-band
8
gamma-band response
8
first-episode psychosis
8
executive control
8
eagbr modulation
8
sensory processing
8
modulation
7
fep
7

Similar Publications

Solvent-Responsive Glass Transition Behavior of Polyelectrolyte Complexes.

Macromolecules

January 2025

Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.

Polyelectrolyte complexes (PECs) have attracted considerable attention owing to their unique physicochemical properties and potential applications as smart materials. Herein, the glass transitions of PECs solvated with varying alcohols are investigated in poly(diallyldimethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes by using modulated differential scanning calorimetry (MDSC). Solvents with one or two hydroxyl groups are selected to examine the effect of PAA-solvent interactions on the glass transition temperature ( ).

View Article and Find Full Text PDF

Oral cancer (OC) continues to pose a significant global health challenge, marked by high morbidity and mortality rates despite advances in diagnosis and treatment. Numerous novel potential anticancer drugs have been evaluated, many of which are derived from natural sources, such as microorganisms, plants, and animals. Among these, plant lectins - a distinctive group of proteins and glycoproteins with strong biological activity - have garnered considerable attention over the years.

View Article and Find Full Text PDF

The impact of artificial light exposure on human health has garnered significant attention in recent years. In particular, its effects on reproductive health have raised concerns. Given that the onset of menarche serves as a crucial indicator of reproductive maturity, understanding the implications of artificial light exposure becomes paramount.

View Article and Find Full Text PDF

Acetylcholine modulates the network physiology of the hippocampus, a crucial brain structure that supports cognition and memory formation in mammals . In this and adjacent regions, synchronized neuronal activity within theta-band oscillations (4-10Hz) is correlated with attentive processing that leads to successful memory encoding . Acetylcholine facilitates the hippocampus entering a theta oscillatory regime and modulates the temporal organization of activity within theta oscillations .

View Article and Find Full Text PDF

Learning in dynamic environments requires animals to not only associate cues with outcomes but also to determine cue salience, which modulates how quickly related associations are updated. While dopamine (DA) in the nucleus accumbens core (NAcc) has been implicated in learning associations, the mechanisms of salience are less understood. Here, we tested the hypothesis that acetylcholine (ACh) in the NAcc encodes cue salience.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!