Introducing polar groups into non-polar polyolefins can significantly enhance the important properties of materials. However, producing polyolefin backbones consisting of polar blocks remains elusive, due to the substantial difference of reactivity ratios between polar and non-polar olefin monomers in radical polymerization or the poisoning of transition-metal catalysts by polar groups in coordination polymerization. Herein we present a practical way for the preparation of polyethylene-based polymers with distinct polar groups by radical polymerization of α-olefins. A strategy of switchable remote hydrogen atom or group transfer is devised, leading to a diverse range of AAB or ABC sequence-defined carbon-chain polyolefins. The utility of these polymers is demonstrated by using poly(ethyl 2-cyanohept-6-enoate) (P2) as an interphase layer material in anode-free Li metal battery, which effectively improves the cycling stability of the battery and indicates its potential in energy storage applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202418350 | DOI Listing |
Adv Sci (Weinh)
December 2024
Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3220, Australia.
Two-dimensional (2D) nanochannels have demonstrated outstanding performance for sieving specific molecules or ions, owing to their uniform molecular channel sizes and interlayer physical/chemical properties. However, controllably tuning nanochannel spaces with specific sizes and simultaneously achieving high mechanical strength remain the main challenges. In this work, the inter-sheet gallery d-spacing of graphene oxide (GO) membrane is successfully tailored with high mechanical strength via a general radical-induced polymerization strategy.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.
A bioinspired method for surface modification of nanocellulose has been proposed, drawing inspiration from the lignification process in plant cell walls. Unlike traditional methods for synthesizing dehydrogenation polymers (DHPs) of lignin, this study innovatively prepared a water-soluble DHPs precursor, coniferin, which underwent homogeneous polymerization catalyzed by peroxidase to generate DHPs that adhered to the surface of nanocellulose. Modified nanocellulose was then filtered into membranes, and the presence of DHPs increased the water contact angle, achieving high hydrophobicity with little DHPs content.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra 176206, India. Electronic address:
In the present study, we prepared Gum Acacia-cl-Acrylic acid-co-itaconic acid (GA-cl-AA-co-IA) hydrogels by free radical crosslink polymerization method for the efficient removal of Rhodamine-B (RhB) dye. The hydrogels were further characterized by different characterization techniques: Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Atomic force microscopy (AFM), Brunuer-Emmett-Teller (BET) and field emission scanning electron microscopy (FE-SEM) to confirm synthesis. The synthesis parameters were optimized by swelling studies, which were performed by gravimetric analysis method.
View Article and Find Full Text PDFACS Appl Energy Mater
December 2024
Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary.
Amphiphilic copolymers of comb-like poly(poly(ethylene glycol) methacrylate) (PPEGMA) with methyl methacrylate (MMA) synthesized by one-pot atom transfer radical polymerization were mixed with lithium bis (trifluoromethanesulfonyl) imide salt to formulate dry solid polymer electrolytes (DSPE) for semisolid-state Li-ion battery applications. The PEO-type side chain length (EO monomer's number) in the PEGMA macromonomer units was varied, and its influence on the mechanical and electrochemical characteristics was investigated. It was found that the copolymers, due to the presence of PMMA segments, possess viscoelastic behavior and less change in mechanical properties than a PEO homopolymer with 100 kDa molecular weight in the investigated temperature range.
View Article and Find Full Text PDFBiomacromolecules
December 2024
Department of Chemical Engineering, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada.
Synthetic vinyl polymers have long been recognized for their potential to be utilized in drug delivery, tissue engineering, and other biomedical applications. The synthetic control that chemists have over their structure and properties is unmatched, allowing vinyl polymer-based materials to be precisely engineered for a range of therapeutic applications. Yet, their lack of biodegradability compromises the biocompatibility of vinyl polymers and has held back their translation into clinically used treatments for disease thus far.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!