Constructed wetlands (CWs) have emerged as robust alternatives to traditional wastewater treatment technologies. The efficacy of CWs centers on the intricate interplay of factors, including plant species, substrate attributes, soil conditions, microbial consortia, and operational variables. Microorganisms, the cornerstone of CWs, have a significant influence on mineralization and pollutant mitigation processes. Microbial assemblies within CWs exhibit dynamic responses by adapting novel mechanisms. Here, Proteobacteria possess the ability to efficiently fix nitrogen through innovative pathways, including denitrifying anaerobic methane oxidation (DAMO) and sulfur autotrophic denitrification (SAD). Furthermore, Actinobacteria, Firmicutes, and Gemmatimonadetes have been thoroughly investigated to emphasize their significance in phosphate metabolism. These microorganisms may adapt to various metabolic pathways due to seasonal changes, plant diversity, wastewater composition, and system configuration. On the other hand, microorganisms have been proven to be effective in removing heavy metals in constructed wetlands. Various techniques such as biosorption, transformation, and biomineralization are widely used for this purpose. Therefore, it is essential to conduct a comprehensive investigation of the structure and diversity of microbial communities within constructed wetlands to gain a complete understanding of the system's performance and optimization strategies. This review provides a detailed analysis of microbial studies conducted in constructed wetlands and aimed to understand the mechanisms involved in pollutant removal and the influence of various factors on microbial community prevalence. The outcomes of this review not only deepen our comprehension of CWs and ecosystems, but also provide a basis for knowledgeable choices in their planning and execution, ultimately leading to the responsible stewardship of water resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607660 | PMC |
http://dx.doi.org/10.1016/j.crmicr.2024.100311 | DOI Listing |
Water Res X
January 2025
Department of Systemic Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15 04318 Leipzig, Germany.
Due to accelerating climate change and the need for new development to accommodate population growth, adaptation of urban drainage systems has become a pressing issue in cities. Questions arise whether decentralised urban drainage systems are a better alternative to centralised systems, and whether Nature Based Solutions' (NBS) multifunctionality also brings economic benefits. This research aims to develop spatio-economic scenarios to support cities in increasing their resilience to urban flooding with NBS.
View Article and Find Full Text PDFBioresour Technol
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Avenue, Nanjing 210023, PR China. Electronic address:
In order to develop constructed wetland (CW) with high-rate N and P removal, sulfur and pyrrhotite modified foam concrete (SPFC) was prepared and used as a substrate to construct CW (SPFC-CW). At hydraulic retention time 6 h, SPFC-CW achieved effluent total nitrogen (TN) 9.96 mg/L and PO-P 0.
View Article and Find Full Text PDFSci Total Environ
December 2024
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400716, PR China. Electronic address:
Heavy metal pollution in urban rivers has become a global issue. In this study, hybrid constructed wetlands (HCWs) were used to comprehensively evaluate the effectiveness of field wetland projects in removing heavy metals, with evaluation metrics including seasonal variations, plant contributions, and structure compositions. The experimental results showed that the synergistic system of root-microorganism-substrate formed in the combined process well realized the high efficiency of heavy metal removal, in which the removal rate in the warm season was higher than that in the cold season.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. Electronic address:
To identify cadmium sulfide nanoparticles (CdS NPs) and Cd hyperaccumulators for Cd-contaminated waters. A potential species of constructed wetland plants (P. oleracea) was examined for their CdS NPs and Cd ions tolerance and accumulation.
View Article and Find Full Text PDFWater Res
December 2024
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China. Electronic address:
Low temperature generally restricts biological activity, slowing down electron transfer in biogeochemical cycles and causing a series of environmental problems such as nitrogen pollution. We present a strategy to boost electron transfer in microbial cell at low temperatures via stimulation with low current. It is demonstrated by establishing a constructed wetland system coupled with solar powered microbial electrolysis cell, which enhances microbial activity through external micro currents (18.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!