Single-cell printing technology has arisen as a potent instrument for investigating cell biology and disease pathophysiology. Nonetheless, current single-cell printing methodologies are hindered by restricted throughput, a limited field of view, and diminished efficiency. We present an innovative single-cell printing chip that utilizes thermal inkjet technology for single-cell printing, therefore addressing these constraints. We have accomplished high-throughput, wide-field, and efficient single-cell printing by merging a high-density thermal foam-based inkjet nozzle array on a chip with high-speed cameras and computer vision technologies for optical image capture and single-cell identification training. We have shown the efficacy and adaptability of the printing chip by printing various concentrations of Chinese hamster ovary cells and human embryonic kidney 293 cells. The printing of a single 96-well plate is accomplished in 2-3 min, facilitating one-time loading and uninterrupted multi-plate paving. Our thermal bubble single-cell printing chip serves as a viable platform for high-throughput single-cell analysis applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604098 | PMC |
http://dx.doi.org/10.1063/5.0225883 | DOI Listing |
Small Methods
January 2025
Forschungszentrum Juelich GmbH, Institute of Energy Technologies, IET-4, Electrochemical Process Engineering, 52425, Juelich, Germany.
Understanding the sheet resistance of porous electrodes is essential for improving the performance of polymer electrolyte membrane (PEM) water electrolyzers and related technologies. Despite its importance, existing methods often fail to provide reliable and comprehensive data, especially for porous materials with complex morphologies and non-uniform thicknesses. This study introduces a robust and straightforward method for determining the sheet resistance of porous electrodes using a novel probe concept based on industrial printed circuit board (PCB) technology.
View Article and Find Full Text PDFNature
January 2025
Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Cis-regulatory elements (CREs) control gene expression and are dynamic in their structure and function, reflecting changes in the composition of diverse effector proteins over time. However, methods for measuring the organization of effector proteins at CREs across the genome are limited, hampering efforts to connect CRE structure to their function in cell fate and disease. Here we developed PRINT, a computational method that identifies footprints of DNA-protein interactions from bulk and single-cell chromatin accessibility data across multiple scales of protein size.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
Diabetic foot ulcer (DFU) is a common and severe complication of diabetes mellitus, the etiology of which remains insufficiently understood, particularly regarding the involvement of extracellular vesicles (EVs). In this study, nanoflow cytometry to detect EVs in DFU skin tissues is used and found a significant increase in the Translocase of Outer Mitochondrial Membrane 20 (TOM20) mitochondrial-derived vesicles (MDVs). The role of MDVs in DFU is yet to be reported.
View Article and Find Full Text PDFLab Chip
January 2025
VERAXA Biotech GmbH, 69124 Heidelberg, Germany.
Microfluidic droplet sorting has emerged as a powerful technique for a broad spectrum of biomedical applications ranging from single cell analysis to high-throughput drug screening, biomarker detection and tissue engineering. However, the controlled and reliable retrieval of selected droplets for further off-chip analysis and processing is a significant challenge in droplet sorting, particularly in high-throughput applications with low expected hit rates. In this study, we present a microfluidic platform capable of sorting and dispensing individual droplets with minimal loss rates.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom.
ConspectusThe emergence of two-dimensional (2D) materials, such as graphene, transition-metal dichalcogenides (TMDs), and hexagonal boron nitride (h-BN), has sparked significant interest due to their unique physicochemical, optical, electrical, and mechanical properties. Furthermore, their atomically thin nature enables mechanical flexibility, high sensitivity, and simple integration onto flexible substrates, such as paper and plastic.The surface chemistry of a nanomaterial determines many of its properties, such as its chemical and catalytic activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!