Dynamics of stand density and self-thinning in Chinese fir plantations: theoretical insights and empirical validation.

Front Plant Sci

Department of Geography and Environmental Resources, Southern Illinois University, Carbondale, IL, United States.

Published: November 2024

Introduction: Stand density management is essential for adaptive silviculture, thinning decisions, growth modeling, and yield prediction in forestry, particularly for plantations. Despite extensive research on self-thinning rules and the maximum size-density law, significant gaps remain in the biophysical understanding and validation of the relationships among key stand variables and parameters.

Methods: This study theoretically explored and validated the relationship between maximum size-density and two key metrics: average diameter at breast height (D) and tree height (H). We used time-series data from a 30-year clear-cut, fully stocked Chinese fir plantation, a fast-growing commercial species in China, for validation.

Results: A growth balance status for fully stocked stands was proposed, wherein prior to self-thinning, the growth rate of the stand basal area (G) aligns with that of the average tree height (H), expressed as and approaching a constant slope, b. Generalized maximum size-density and stand density index (SDI) equations were developed: and with , differing from traditional equations. Additionally, a generalized self-thinning equation, or , was introduced, indicating that in fully stocked stands, tree volume or biomass depends on both tree height and tree count.

Discussion: These findings advance understanding of the maximum size-density law and self-thinning boundary, providing refined tools for managing stand density in Chinese fir plantations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604417PMC
http://dx.doi.org/10.3389/fpls.2024.1444807DOI Listing

Publication Analysis

Top Keywords

stand density
16
maximum size-density
16
chinese fir
12
tree height
12
fully stocked
12
fir plantations
8
size-density law
8
height tree
8
stocked stands
8
self-thinning
5

Similar Publications

Background: Electrographic flow (EGF) mapping allows for the visualization of global atrial wavefront propagations. One mechanism of initiation and maintenance of atrial fibrillation (AF) is stimulation from EGF-identified focal sources that serve as driver sites of fibrillatory conduction. Electrographic flow consistency (EGFC) further quantifies the concordance of observed wavefront patterns, indicating that a healthier substrate shows more organized wavefront propagation and higher EGFC.

View Article and Find Full Text PDF

Two-dimensional transition metal dichalcogenides (2D TMDCs) can be combined with organic semiconductors to form hybrid van der Waals heterostructures. Specially, non-fullerene acceptors (NFAs) stand out due to their excellent absorption and exciton diffusion properties. Here, we couple monolayer tungsten diselenide (ML-WSe) with two well performing NFAs, ITIC, and IT-4F (fluorinated ITIC) to achieve hybrid architectures.

View Article and Find Full Text PDF

Anterior lumbar interbody fusion (ALIF) is an anterior surgical approach for interbody fusion in the lumbar spine which affords the surgeon unfettered access to the disc space and allows for release of the anterior longitudinal ligament and insertion of a large, lordotic interbody graft. Despite the benefits associated with ALIF when compared with other lumbar interbody fusion techniques, the ALIF approach is associated with a number of unique complications, and certain patient-specific criteria (e.g.

View Article and Find Full Text PDF

Crystalline porous materials, known for their ordered structures, hold promise for efficient hydroxide conductivity in alkaline fuel cells with limited ionic densities. However, the rigid cross-linking of porous materials precludes their processing into membranes, while composite membranes diminish materials' conductivity advantage due to the interrupted phases. Here, we report a self-standing three-dimensional covalent organic framework (3D COF) membrane with efficient OH-transport through its interconnected 3D ionic nanochannels.

View Article and Find Full Text PDF

Conventional versus Unconventional Oxygen Reduction Reaction Intermediates on Single Atom Catalysts.

ACS Appl Mater Interfaces

January 2025

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.

The oxygen reduction reaction (ORR) stands as a pivotal process in electrochemistry, finding applications in various energy conversion technologies such as fuel cells, metal-air batteries, and chlor-alkali electrolyzers. Hereby, a comprehensive density functional theory (DFT) investigation is presented into the proposed conventional and unconventional ORR mechanisms using single-atom catalysts (SACs) supported on nitrogen-doped graphene (NG) as model systems. Several reaction intermediates have been identified that appear to be more stable than the ones postulated in the conventional mechanism, which follows the *OOH, *O, and *OH intermediates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!