Strontium titanate (STO), a cubic perovskite material, has gained recent attention as a supercapacitor active material with its pseudocapacitive energy storage attributed to anion intercalation. However, very few in-depth studies have been conducted to understand the anion storage properties of STO and its metal-doped derivative compounds. In this study, we explored the anion-insertion storage mechanism of Mn-doped strontium titanate (Mn-STO) compared to pristine STO. The polycrystalline Mn-STO, synthesized via solid-state reaction, showed 3-fold times higher electrochemical surface area and exhibited enhanced anion storage compared to pristine STO. Detailed anion kinetics and diffusion studies reveal that the anion storage in Mn-STO is dominated by the bulk diffusion-controlled pseudocapacitive process than in STO. Further, the supercapacitor fabricated with Mn-STO in a 3 M KOH aqueous electrolyte with 0.1 M MnSO additives demonstrated excellent cycling stability, retaining 100% capacitance after 10,000 cycles, highlighting the potential of Mn-STO as an electrode material for supercapacitor applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603244 | PMC |
http://dx.doi.org/10.1021/acsomega.4c08911 | DOI Listing |
Methods Mol Biol
December 2024
The James Hutton Institute, Dundee, UK.
We describe a protocol to amplify DNA barcodes of known and unknown taxa of Phytophthora and related plant pathogenic oomycetes from a range of environments. The methods focus on sampling pathogen propagules from water using in situ sampling and filtration equipment and buffers that enable efficient storage and DNA extraction for later downstream processing.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Graduate School of Science and Technology for Innovation, Yamaguchi University (YU), 2-16-1 Tokiwadai, Ube 755-8611, Japan.
To investigate efficient operating conditions for bipolar membrane electrodialysis (BMED), a comparison of current efficiency () and power intensity () was conducted using different anion-exchange membranes (AEMs) and salt solutions (NaCl and NaSO) as feed solutions in BMED. The results indicated that was higher and was lower for a commercial proton-blocking AEM (ACM) than for a standard AEM (ASE) when NaCl was used. This is because ASE has a higher water content than ACM, leading to greater H permeability, which reduces .
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
School of Life Science, Qinghai Normal University/Academy of Plateau Science and Sustainability, Xining 810008, China.
As the most effective way to remedy and reconstruct the degraded ecosystems, vegetation restoration could affect soil carbon and nitrogen cycles and water balance. We examined the responses of carbon, nitrogen, and water in 0-200 cm soil layer to vegetation restoration years by analyzing their distribution characteristics across a restoration chronosequence of plantation (5, 10, 15, 20, and 25 years) in alpine sandy region of the Qinghai-Tibetan Plateau. The results showed that the content and storage of soil organic carbon (SOC) and soil total nitrogen (STN) increased significantly, while that of soil inorganic carbon (SIC) decreased significantly with restoration years.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Chemistry, Northeastern University Shenyang 110819 China
Aqueous Zn-S batteries provide competitive energy density for large-scale energy storage systems. However, the cathode active material exhibits poor electrical conductivity especially at the discharged state of ZnS. Its morphology generated in cells thus directly determines the cathode electrochemical activity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Shenzhen institute of advanced technology Chinese Academy of Sciences, Functional Thin Films Research Centre, 1068 Xueyuan Avenue, Shenzhen University Town, 518000, SHENZHEN, CHINA.
Organics electrode materials offer multi-electron reactivity, flexible structures, and redox reversibility, but encounter poor conductivity and durability in electrolytes. To overcome above barriers, we propose a dual elongation strategy of π-conjugated motifs with active sites, involving extended carbazole and electropolymerized crosslinked polymer, which enhances electronic conductivity by the electronic delocalization of electron-withdrawing conjugated groups, boosts theoretical capacity by increasing redox-active site density, and endows robust electrochemical stability attributed to crosslinked organic structures. As a proof-of-concept, 5,11-dihydridoindolo[3,2-b]carbazole (DHIC) is selected as the model cathode material for a dual-ion battery, with elongated carbazole groups functioning both as redox-active centers and polymerization anchors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!