Interface Engineering in All-Oxide Photovoltaic Devices Based on Photoferroelectric BiFeCoO Thin Films.

ACS Appl Electron Mater

Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra 08193, Spain.

Published: November 2024

AI Article Synopsis

  • Photoferroelectric BiFeO (BFO) is a lead-free material being studied for use in thin film photovoltaic devices, but its efficiency remains low despite ongoing improvements in device architecture.
  • This research investigates how adding a ZnO layer to a BiFeCoO (BFCO) heterostructure affects its ferroelectric and photoresponse properties, revealing a significant increase in short circuit current when compared to devices without ZnO.
  • Findings indicate that the enhanced performance is due to better band energy alignment at the ZnO/BFCO interface, which minimizes charge recombination, highlighting ZnO's potential in improving the functionality of BFO-based optoelectronic devices.

Article Abstract

Photoferroelectric BiFeO (BFO) has attracted renewed interest to be integrated into thin film photovoltaic (PV) devices as a stable, lead-free, and versatile photoabsorber with simplified architecture. While significant efforts have been dedicated toward the exploration of strategies to tailor the properties of this photoabsorber to improve the device performance, efficiencies still remain low. The modification of the BFO interface by the incorporation of transport-selective layers can offer fresh opportunities to modify the properties of the device. Identifying an optical and electrically suitable selective layer while ensuring easy device processing and controlled film properties is challenging. In this work, we determine the influence of incorporating a ZnO layer on the ferroelectric and photoresponse behavior of an epitaxial BiFeCoO (BFCO)-based heterostructure. The device is completed with Sn-doped InO (ITO) and LaSrMnO (LSMO) electrodes. This all-oxide system is stable under ambient conditions and displays robust ferroelectricity. The coupled ferroelectricity-photoresponse measurements demonstrate that the short circuit current can be modulated by ferroelectric polarization in up to 68% under blue monochromatic light. Also, the responsivity of the system with the ZnO-modified interface is larger than that of the system with no ZnO. Complementary band energy alignment studies reveal that the observed increase in the short circuit current density of the device with ZnO is attributed to lower Fermi level energy at the ZnO/BFCO interface compared to the ITO/BFCO interface, which reduces charge recombination. Therefore, this study provides useful insights into the role of the ZnO interface layer in stable BFO-based devices to further explore their viability for potential optoelectronic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603610PMC
http://dx.doi.org/10.1021/acsaelm.4c01533DOI Listing

Publication Analysis

Top Keywords

photovoltaic devices
8
short circuit
8
circuit current
8
interface
6
device
5
interface engineering
4
engineering all-oxide
4
all-oxide photovoltaic
4
devices based
4
based photoferroelectric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!