Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metal matrix composites (MMCs) offer asignificant boost to achieve a wide range of advanced mechanical properties and improved performance for a variety of demanding applications. The addition of metal particles as reinforcement in MMCs is an exciting alternative to conventional ceramic reinforcements, which suffer from numerous shortcomings. Over the last two decades, various categories of metal particles, i.e., intermetallics, bulk metallic glasses, high-entropy alloys, and shape memory alloys, have become popular as reinforcement choices for MMCs. These groups of metal particles offer a combination of outstanding physico-mechanical properties leading to unprecedented performances; moreover, they are significantly more compatible with the metal matrices compared to traditional ceramic reinforcements. In this review paper, the recent developments in MMCs are investigated. The importance of understanding the active mechanisms at the interface of the matrix and the reinforcement is highlighted. Moreover, the processing techniques required to manufacture high-performance MMCs are explored identifying the potential structural and functional applications. Finally, the potential advantages and current challenges associated with the use of each reinforcement category and the future developments are critically discussed. Based on the reported results, the use of metal particles as reinforcement in MMCs offers a promising avenue for the development of advanced materials with novel mechanical properties. Further progress requires more in-depth fundamental research to realize the active reinforcing mechanisms at the atomic level to precisely identify, understand, and tailor the properties of the integrated composite materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602867 | PMC |
http://dx.doi.org/10.1007/s42114-024-01057-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!