A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Air-Stable Thin Films of Tin Halide Perovskite Nanocrystals by Polymers and AlO Encapsulation. | LitMetric

Air-Stable Thin Films of Tin Halide Perovskite Nanocrystals by Polymers and AlO Encapsulation.

Chem Mater

Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands.

Published: November 2024

Tin halide perovskites are promising for optoelectronics, although their sensitivity to ambient conditions due to Sn(II) oxidation presents a challenge. Encapsulation techniques can mitigate degradation and facilitate advanced studies of the intrinsic properties. To study and improve the ambient stability of CsSnBr and CsSnI nanocrystal (NC) thin films, we explored various encapsulation methods: organic, inorganic, and hybrid. We employed three methods for organic encapsulation: co-deposition with NCs, co-deposition with an additional top layer, and polymerization with NCs. We synthesized thin layers of alumina by using atomic layer deposition for inorganic encapsulation. While individual methods offered marginal improvements, the hybrid approach provided the best results. By employing a hybrid heterostructured thin-film strategy, with the NC layer covered by a thin layer of poly(methyl methacrylate) followed by a 40 nm alumina layer, the stability in air was improved from a few seconds to a record period of 15 days, a crucial advancement for the further exploration of tin halide perovskites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603609PMC
http://dx.doi.org/10.1021/acs.chemmater.4c02261DOI Listing

Publication Analysis

Top Keywords

tin halide
12
thin films
8
halide perovskites
8
methods organic
8
encapsulation
5
layer
5
air-stable thin
4
films tin
4
halide perovskite
4
perovskite nanocrystals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!