This study aims to use bioinformatics and machine learning algorithms to screen and analyze the key genes involved in venous thromboembolism (VTE) and explore the relationship between these biomarkers and immune cell infiltration. The gene expression profile with the identifier GSE19151 was downloaded from the GEO database. Differential expression analysis using the limma package was conducted to identify genes that were differentially expressed between VTE and normal samples. Biological activities of these genes were then investigated through GO analysis utilizing the R language package. KEGG and GSEA were also performed to identify key signaling pathways. Furthermore, machine learning techniques were employed to determine hub gene signatures related to VTE, and ROC curves were used to validate the findings. To compare the immune infiltration of healthy and VTE samples, single sample gene set enrichment analysis (ssGSEA) was applied. Lastly, the Spearman correlation coefficient was used to assess the relationship between the expression of hub genes and immune cell infiltration. A total of 628 differentially expressed genes (DEGs) were discovered between the VTE samples and normal samples. GO analysis identified protein polyubiquitination, lysosomal lumen acidification, organellar ribosome, mitochondrial ribosome, ammonium transmembrane transporter activity, and immunoglobulin binding as the processes with the highest abundance of DEGs. KEGG pathway analysis revealed that DEGs were enriched in ribosome, COVID-19, viral infection, oxidative phosphorylation, Parkinson's disease, nonalcoholic fatty liver disease, apoptosis, and cancer. The most prominent KEGG pathways associated with VTE were ribosome, Parkinson's disease, oxidative phosphorylation, Alzheimer's disease, and Huntington's disease according to GSEA findings. DLST and LSP1 were identified as hub gene signatures in VTE by machine learning integrative analysis, and ROC curves confirmed their diagnostic value. Results from ssGSEA indicated a significant difference in the degree of immune cell infiltration between VTE and normal samples, with the expression of DLST and LSP1 positively correlated with the content of some immune cells. The R package, code, and analysis results used in this paper are available on https://github.com/doctorlaby/my-project. Our research is the first to utilize machine learning techniques in identifying DLST and LSP1 as significant biomarkers of VTE. With our findings, we have uncovered new insights into the underlying causes of VTE and potential treatments for affected patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608302 | PMC |
http://dx.doi.org/10.1155/ianc/2202321 | DOI Listing |
Biol Direct
January 2025
National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.
Background: Carotid atherosclerotic plaque is the primary cause of cardiovascular and cerebrovascular diseases. It is closely related to oxidative stress and immune inflammation. This bioinformatic study was conducted to identify key oxidative stress-related genes and key immune cell infiltration involved in the formation, progression, and stabilization of plaques and investigate the relationship between them.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225000, China.
Rheumatoid arthritis (RA), a chronic inflammatory joint disease causing permanent disability, involves exosomes, nanosized mammalian extracellular particles. Circular RNA (circRNA) serves as a biomarker in RA blood samples. This research screened differentially expressed circRNAs in RA patient plasma exosomes for novel diagnostic biomarkers.
View Article and Find Full Text PDFJ Cheminform
January 2025
School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.
G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.
View Article and Find Full Text PDFCell Div
January 2025
Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Background: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times.
View Article and Find Full Text PDFParasit Vectors
January 2025
Faculty of Information Technology, Mutah University, Mutah, Jordan.
Background: Amebiasis represents a significant global health concern. This is especially evident in developing countries, where infections are more common. The primary diagnostic method in laboratories involves the microscopy of stool samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!