The human genome is largely noncoding, yet the field is still grasping to understand how noncoding variants impact transcription and contribute to disease etiology. The massively parallel reporter assay (MPRA) has been employed to characterize the function of noncoding variants at unprecedented scales, but its application has been largely limited by the context. The field will benefit from establishing a systemic platform to study noncoding variant function across multiple tissue types under physiologically relevant conditions. However, to date, MPRA has been applied to only a handful of conditions. Given the complexity of the central nervous system and its widespread interactions with all other organ systems, our understanding of neuropsychiatric disorder-associated noncoding variants would be greatly advanced by studying their functional impact in the intact brain. In this review, we discuss the importance, technical considerations, and future applications of implementing MPRA in the space with the focus on neuropsychiatric disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607654PMC
http://dx.doi.org/10.1016/j.cellin.2024.100214DOI Listing

Publication Analysis

Top Keywords

noncoding variants
12
massively parallel
8
parallel reporter
8
reporter assay
8
noncoding
5
snp future
4
future massively
4
assay human
4
human genome
4
genome noncoding
4

Similar Publications

Recently, a novel African ancestry specific Parkinson's disease (PD) risk signal was identified at the gene encoding glucocerebrosidase ( ). This variant (rs3115534-G) is carried by ∼50% of West African PD cases and imparts a dose-dependent increase in risk for disease. The risk variant has varied frequencies across African ancestry groups, but is almost absent in European and Asian ancestry populations.

View Article and Find Full Text PDF

Background And Aims: Familial hypercholesterolemia (FH) and other disorders with similar features are common genetic disorders that remain underdiagnosed and undertreated, due in part to the cost of screening. The aim of this study was to design and implement a whole gene targeted NGS panel for the molecular diagnosis of FH and statin intolerance with an emphasis on high quality variant calling, including copy number analysis.

Methods: A whole gene panel for hybridisation-based short read NGS was designed for the dominant FH-genes low density lipoprotein receptor (), apolipoprotein B (APOB), proproteinconvertas subtilisin/kexin type 9 (PCSK9), apolipoprotein E (APOE) and the recessive FH-genes low density lipoprotein receptor adaptor protein 1 (), ATP binding cassette subfamily member 5/8 (ABCG5/8) and lipase A, lysosomal acid type (), as well as solute carrier organic anion transporter family member 1B1 (), not an FH gene but linked to statin intolerance.

View Article and Find Full Text PDF

Background: Variants in the gene, encoding guanosine triphosphate cyclohydrolase, are associated with dopa-responsive dystonia (DRD) and are considered risk factors for parkinson's disease.

Methods: Comprehensive neurological assessments documented motor and non-motor symptoms in a Chinese family affected by DRD. Whole-exome sequencing (WES) was employed to identify potential mutations, with key variants confirmed by Sanger sequencing and analyzed for familial co-segregation.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by widespread inflammation and autoantibody production. Its development and progression involve genetic, epigenetic, and environmental factors. Although genome-wide association studies (GWAS) have repeatedly identified a susceptibility signal at 16p13, its fine-scale source and its functional and mechanistic role in SLE remain unclear.

View Article and Find Full Text PDF

Evolutionary dynamics of mitochondrial genomes and intracellular transfers among diploid and allopolyploid cotton species.

BMC Biol

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.

Background: Plant mitochondrial genomes (mitogenomes) exhibit extensive structural variation yet extremely low nucleotide mutation rates, phenomena that remain only partially understood. The genus Gossypium, a globally important source of cotton, offers a wealth of long-read sequencing resources to explore mitogenome and plastome variation and dynamics accompanying the evolutionary divergence of its approximately 50 diploid and allopolyploid species.

Results: Here, we assembled 19 mitogenomes from Gossypium species, representing all genome groups (diploids A through G, K, and the allopolyploids AD) based on a uniformly applied strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!