Highly Efficient Aggregation-induced Electrochemiluminescence Performance of Covalent Organic Frameworks with Electron-rich Conjugated Structures.

Chemistry

Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China.

Published: December 2024

AI Article Synopsis

  • AIECL (aggregation-induced electrochemiluminescence) luminophores show promise in ECL engineering by overcoming the quenching issues found in solid luminescent materials, but there’s a scarcity of emitters with high AIECL performance.
  • Researchers designed imine-linked covalent organic frameworks (COFs) using specific symmetrical monomers to serve as ECL emitters in water.
  • The study found that COFs containing terthienyl units exhibited ECL intensity 206 times greater than those with furan units due to enhanced thiophene units and π-π conjugation, providing a new strategy for creating efficient ECL-active COFs with excellent AIECL efficiency.

Article Abstract

Since aggregation-induced electrochemiluminescence (AIECL) luminophore overcomes the restriction of aggregation-caused quenching in solid luminescent materials, AIECL luminophore has become a promising material in the field of electrochemiluminescence (ECL) engineering. However, the lack of ECL emitters with high AIECL performance limits its wide application. Herein, imine-linked covalent organic frameworks (COFs) with C symmetrical tetraphenyl ethylene and C symmetrical five-membered heteroaromatic monomers are designed as ECL emitter in aqueous media. Significantly, the ECL intensity of COFs with terthienyl units (TTA-TAPE) is 206 times that of COFs with furan units in the presence of tri-n-propylamine (TPrA), which is the result of enhancing ECL signals by increasing the thiophene units and π-π conjugation of COFs. Furthermore, the ECL mechanism of these COFs is vested in the bandgap model. Thus, the study provides a strategy for designing highly efficient ECL-active COFs emitters with excellent AIECL efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202403820DOI Listing

Publication Analysis

Top Keywords

highly efficient
8
aggregation-induced electrochemiluminescence
8
covalent organic
8
organic frameworks
8
aiecl luminophore
8
ecl
6
cofs
6
efficient aggregation-induced
4
electrochemiluminescence performance
4
performance covalent
4

Similar Publications

Accurate prediction of runoff is of great significance for rational planning and management of regional water resources. However, runoff presents non-stationary characteristics that make it impossible for a single model to fully capture its intrinsic characteristics. Enhancing its precision poses a significant challenge within the area of water resources management research.

View Article and Find Full Text PDF

Transforming an azaarene into the spine of fusedbicyclics via cycloaddition-induced scaffold hopping of 5-Hydroxypyrazoles.

Nat Commun

December 2024

National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China.

Skeleton editing for heteroarenes, especially pyrazoles, is challenging and remains scarce because these non-strained aromatics exhibit inert reactivities, making them relatively inactive for performing a dearomatization/cleavage sequence. Here, we disclose a cycloaddition-induced scaffold hopping of 5-hydroxypyrazoles to access the pyrazolopyridopyridazin-6-one skeleton through a single-operation protocol. By converting a five-membered aza-arene into a five-unit spine of a 6/6 fused-bicyclic, this work unlocks a ring-opening reactivity of the pyrazole core that involves a formal C = N bond cleavage while retaining the highly reactive N-N bond in the resulting product.

View Article and Find Full Text PDF

Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota.

Nat Commun

December 2024

AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain.

Marine brown algae produce the highly recalcitrant polysaccharide fucoidan, contributing to long-term oceanic carbon storage and climate regulation. Fucoidan is degraded by specialized heterotrophic bacteria, which promote ecosystem function and global carbon turnover using largely uncharacterized mechanisms. Here, we isolate and study two Planctomycetota strains from the microbiome associated with the alga Fucus spiralis, which grow efficiently on chemically diverse fucoidans.

View Article and Find Full Text PDF

Ultrathin polymer membrane for improved hole extraction and ion blocking in perovskite solar cells.

Nat Commun

December 2024

Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, China.

Highly efficient perovskite solar cells (PSCs) in the n-i-p structure have demonstrated limited operational lifetimes, primarily due to the layer-to-layer ion diffusion in the perovskite/doped hole-transport layer (HTL) heterojunction, leading to conductivity drop in HTL and component loss in perovskite. Herein, we introduce an ultrathin (~7 nm) p-type polymeric interlayer (D18) with excellent ion-blocking ability between perovskite and HTL to address these issues. The ultrathin D18 interlayer effectively inhibits the layer-to-layer diffusion of lithium, methylammonium, formamidium, and iodide ions.

View Article and Find Full Text PDF

DNA helicases play a pivotal role in maintaining genome integrity by unwinding the DNA double helix and are often considered promising targets for drug development. However, assessing specific DNA helicase activity in living cells remains challenging. Herein, the first anchor-embedded duplex (ATED) probe, 17GC, is constructed to uniquely monitor the unwinding activity of Werner syndrome helicase (WRN), a clinical anticancer target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!