A New TiO-Based Cathode Material with Interface-Dominated Storage Mechanism for Aqueous Zinc-Ion Batteries.

Small

School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.

Published: December 2024

Aqueous zinc-ion batteries (AZIBs) are highly desirable for large-scale energy storage applications, yet the lack of suitable cathode materials hinders their deployment. Here, for the first time, a new and promising TiO-based cathode material (TOC-AI) is reported for AZIBs and unveil a novel energy storage mechanism that enables Zn storage predominantly originating from the interface. The TOC-AI composed of ultrafine TiO nanocrystals embedded within an amorphous carbon matrix, featuring abundant atomic interfaces and strong interactions, triggers a decoupled and rapid transport of Zn ions and electrons in the interfacial space charge region, similar to an electrostatic capacitor. Moreover, the presence of titanium vacancies facilitates Zn intercalation into the TiO bulks, contributing extra capacity to the composite. Finally, a high capacity of 111 mAh g and excellent cycling performance with 77% capacity retention after 17 000 cycles are achieved. Such interface-dominated storage mechanism has also been successfully extended to other composite systems, broadening the scope of potential applications for materials traditionally deemed inactive for Zn storage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202409304DOI Listing

Publication Analysis

Top Keywords

storage mechanism
12
tio-based cathode
8
cathode material
8
interface-dominated storage
8
aqueous zinc-ion
8
zinc-ion batteries
8
energy storage
8
storage
6
material interface-dominated
4
mechanism aqueous
4

Similar Publications

In-situ conversion of BiOBr to Br-doped BiOCl nanosheets for "rocking chair" zinc-ion battery.

J Colloid Interface Sci

January 2025

School of Mechanical Engineering and Mechanics, School of Chemistry, Xiangtan University, Xiangtan 411105 PR China. Electronic address:

Developing insertion-type anodes is essential for designing high-performance "rocking chair" zinc-ion batteries. BiOCl shows great potential as an insertion-type anode material for Zn storage due to its high specific capacity and unique layered structure. However, the development of BiOCl has been significantly hampered by its poor stability and kinetics during cycling.

View Article and Find Full Text PDF

Escherichia coli O157:H7 has caused many foodborne disease outbreaks and resulted in unimaginable economic losses. With the evolution of food consumption, people prefer natural preservatives. In this study, the natural agent harmane exhibited potential activity against E.

View Article and Find Full Text PDF

Ammonia (NH) holds promise as a carbon-free fuel. Blending it with highly reactive fuels could efficiently alleviate issues such as slow burning rates and narrow flammability ranges. Ethanol (CHOH) offers the advantage of carbon neutrality and has a high-octane rating.

View Article and Find Full Text PDF

Ecosystem functioning and management are primarily concerned with addressing climate change and biodiversity loss, which are closely linked to carbon stock and species diversity. This research aimed to quantify forest understory (shrub and herb) diversity, tree biomass and carbon sequestration in the Binsar Wildlife Sanctuary. Using random sampling methods, data were gathered from six distinct forest communities.

View Article and Find Full Text PDF

Crude oil pollution of soil is an important issue that has serious effects on both the environment and human health. Phytoremediation is a promising approach to cleaning up oil-contaminated soil. In order to facilitate phytoremediation effects for oil-contaminated soil, this study set up a pot experiment to explore the co-application potentiality of L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!