Previous studies have predominantly focused on the pathogenic mechanisms and epidemiological investigations of pathogenic Escherichia coli (E. coli), but much remains unknown about the non-virulent and non-drug-resistant E. coli (NVNR E. coli) residing in the pig gut. In this study, 215 E. coli strains were identified from fecal samples collected from 26 healthy pigs in Guangdong Province, China. Among them, 12 NVNR E. coli strains were identified through PCR, antibiotic susceptibility tests, and genomic virulence analysis. Phylogenetic analysis revealed that 8 of these NVNR E. coli strains were located in the upstream cluster of the phylogenetic tree, which we consider as the ancestral phylogroup of porcine native E. coli. Notably, strain 2-9 showed a close evolutionary relationship with the probiotics Nissle1917 and EcAZ-1, suggesting it may also be a probiotic strain. These 9 strains (i.e., the 8 ancestral phylogroup strains and the suspected probiotic strain) were designated as evolutionarily superior strains. The 12 NVNR E. coli strains were non-hemolytic and exhibited growth rates comparable to typical E. coli strains, but they varied significantly in their tolerance to gastrointestinal conditions and adherence to IPEC-J2 cells. Most of them lacked the ability to inhibit pathogenic E. coli. Interestingly, the majority of strains exhibiting strong gastrointestinal tolerance, most of those with high adhesion capacity, and all strains possessing antibacterial ability, were found within the range of 9 evolutionarily superior strains. These findings suggest that 9 strains have shown great potential as superior porcine native E. coli strains and warrant further study.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12223-024-01224-6DOI Listing

Publication Analysis

Top Keywords

coli strains
24
nvnr coli
16
coli
13
strains
13
non-virulent non-drug-resistant
8
escherichia coli
8
strains identified
8
ancestral phylogroup
8
porcine native
8
native coli
8

Similar Publications

Are causing recurrent cystitis just ordinary uropathogenic (UPEC) strains?

Virulence

December 2025

Department of Infectious Diseases, Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Rouen, France.

Specific determinants associated with Uropathogenic (UPEC) causing recurrent cystitis are still poorly characterized. Using strains from a previous clinical study (Vitale study, clinicaltrials.gov, identifier NCT02292160) the aims of this study were (i) to describe genomic and phenotypic traits associated with recurrence using a large collection of recurrent and paired sporadic UPEC isolates and (ii) to explore within-host genomic adaptation associated with recurrence using series of 2 to 5 sequential UPEC isolates.

View Article and Find Full Text PDF

Multienzyme Cascade Synthesis of Rare Sugars From Glycerol in Bacillus subtilis.

Biotechnol J

December 2024

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China.

Background: Rare sugars are valuable and unique monosaccharides extensively utilized in the food, cosmetics, and pharmaceutical industries. Considering the high purification costs and the complex processes of enzymatic synthesis, whole-cell conversion has emerged as a significantly important alternative. The Escherichia coli strain was initially used in whole-cell synthesis of rare sugars.

View Article and Find Full Text PDF

Coselection of BAC for Escherichia coli chromosomal DNA multiplex automated genome engineering.

Biotechnol Lett

December 2024

Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China.

Recombineering (recombination-mediated genetic engineering) is a powerful strategy for bacterial genomic DNA and plasmid DNA modifications. CoS-MAGE improved over MAGE (multiplex automated genome engineering) by co-electroporation of an antibiotic resistance repair oligo along with the oligos for modification of the Escherichia coli chromosome. After several cycles of recombineering, the sub-population of mutants were selected among the antibiotic resistant colonies.

View Article and Find Full Text PDF

Predicting sepsis mortality into an era of pandrug-resistant E. coli through modeling.

Commun Med (Lond)

December 2024

Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA.

Background: Infections caused by antibiotic-resistant bacteria are increasingly frequent, burdening healthcare systems worldwide. As pathogens acquire resistance to all known antibiotics - i.e.

View Article and Find Full Text PDF

Escherichia coli of different pathotypes are frequently involved in morbidity and mortality in animals and humans. The study aimed to identify E. coli pathotypes and determine antimicrobial resistance (AMR) profiles in Ethiopian smallholder livestock households.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!