The rise of atmospheric oxygen as a result of photosynthesis in cyanobacteria and chloroplasts has transformed most environmental iron into the ferric state. In contrast, cells within organisms maintain a reducing internal milieu and utilize predominantly ferrous iron. Ferric reductases are enzymes that transfer electrons to ferric ions, either extracellularly or within endocytic vesicles, enabling cellular ferrous iron uptake through Divalent Metal Transporter 1. In mammals, duodenal cytochrome b is a ferric reductase of the intestinal epithelium, but how insects reduce and absorb dietary iron remains unknown. Here we provide indirect evidence of extracellular ferric reductase activity in a small subset of Drosophila melanogaster intestinal epithelial cells, positioned at the neck of the midgut's anterior region. Dietary-supplemented bathophenanthroline sulphate (BPS) captures locally generated ferrous iron and precipitates into pink granules, whose chemical identity was probed combining in situ X-ray absorption near edge structure and electron paramagnetic resonance spectroscopies. An increased presence of manganese ions upon BPS feeding was also found. Control animals were fed with ferric ammonium citrate, which is accumulated into ferritin iron in distinct intestinal subregions suggesting iron trafficking between different cells inside the animal. Spectroscopic signals from the biological samples were compared to purified Drosophila and horse spleen ferritin and to chemically synthesized BPS-iron and BPS-manganese complexes. The results corroborated the presence of BPS-iron in a newly identified ferric iron reductase region of the intestine, which we propose constitutes the major site of iron absorption in this organism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638316 | PMC |
http://dx.doi.org/10.1007/s00775-024-02080-y | DOI Listing |
Int J Mol Sci
December 2024
School of Horticulture, Anhui Agricultural University, Hefei 230036, China.
Iron (Fe) deficiency poses a major threat to pear ( spp.) fruit yield and quality. The () plays a vital part in plant stress responses.
View Article and Find Full Text PDFFEBS J
December 2024
Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Rosario (UNR), Rosario, Argentina.
J Biol Inorg Chem
December 2024
Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, 07360, Mexico City, Mexico.
The rise of atmospheric oxygen as a result of photosynthesis in cyanobacteria and chloroplasts has transformed most environmental iron into the ferric state. In contrast, cells within organisms maintain a reducing internal milieu and utilize predominantly ferrous iron. Ferric reductases are enzymes that transfer electrons to ferric ions, either extracellularly or within endocytic vesicles, enabling cellular ferrous iron uptake through Divalent Metal Transporter 1.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India. Electronic address:
Mol Microbiol
December 2024
Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA.
Pathogenic fungi must appropriately sense the host availability of essential metals such as Fe. In Candida albicans and other yeasts, sensing of Fe involves mitochondrial Fe-S clusters. Yeast mutants for Fe-S cluster assembly sense Fe limitation even when Fe is abundant and hyperaccumulate Fe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!