AI Article Synopsis

  • - Premature transcription termination leads to the accumulation of unadenylated RNA, which the NEXT complex typically degrades, but alternative degradation pathways are not well understood.
  • - Upon inactivation of NEXT, there is an increase in 3' end uridylated and adenylated RNAs, with short U-tailed RNAs modified by TUT4/7 and longer RNAs adenylated by enzymes like TENT2.
  • - These RNAs are degraded through different mechanisms, including the PAXT pathway in the nucleus or the cytoplasmic exosome, where failure to degrade them can result in reduced translation and cell death.

Article Abstract

Premature transcription termination yields a wealth of unadenylated (pA) RNA. Although this can be targeted for degradation by the Nuclear EXosome Targeting (NEXT) complex, possible backup pathways remain poorly understood. Here, we find increased levels of 3' end uridylated and adenylated RNAs upon NEXT inactivation. U-tailed RNAs are mostly short and modified by the cytoplasmic tailing enzymes, TUT4/7, following their PHAX-dependent nuclear export and prior to their degradation by the cytoplasmic exosome or the exoribonuclease DIS3L2. Longer RNAs are instead adenylated redundantly by enzymes TENT2, PAPOLA and PAPOLG. These transcripts are either degraded via the nuclear Poly(A) tail eXosome Targeting (PAXT) connection or exported and removed by the cytoplasmic exosome in a translation-dependent manner. Failure to do so decreases global translation and induces cell death. We conclude that post-transcriptional 3' end modification and removal of excess pA RNA is achieved by tailing enzymes and export factors shared with productive RNA pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609308PMC
http://dx.doi.org/10.1038/s41467-024-54834-6DOI Listing

Publication Analysis

Top Keywords

transcription termination
8
exosome targeting
8
tailing enzymes
8
cytoplasmic exosome
8
rna
4
rna 3'end
4
3'end tailing
4
tailing safeguards
4
safeguards cells
4
cells products
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!