A chain of GdCe oxides boosted biochars derived from maize straw and sewage sludge (GdCe/MPBs) were fabricated for formaldehyde (HCHO) catalytic decomposition. The ingenerate relationship between the abatement performance and corresponding structural feature was comprehensively evaluated by XPS, in situ DRIFTS, BET, XRD, SEM and H-TPR. Meanwhile, 10%GdCe/MPB exhibited excellent performance, favorable SO and moisture toleration over a broad temperature range from 160 to 320 ℃, where it achieved 96.8% removal efficiency with 90.5% selectivity at 200 ℃. The single or united effects of O, SO, HO on HCHO abatement over 10%GdCe/MPB were tested, and the findings demonstrated that the suppressive effects of SO and HO outweighed the promoting influence of O within a specific range. Gd and Ce co-modified MPB revealed superior HCHO removal capability in contrast to that of Gd or Ce severally modified MPB, ascribing to the synergistic effect of GdO and CeO and benefitting from the augmentation of surface area and total pore volume, the aggrandizement of surface active oxygen species, the promotion of redox ability and the inhibition crystallization of CeO. According to in situ DRIFTS, a series of intermediates including formate species and dioxymethylene (DOM) were produced, which would eventually decompose into HO and CO. In addition, the mass transfer and diffusion of the reactants along with the accessibility of the catalytic sites were enlarged by the hierarchical porous structure of the support, which were also answerable for its distinguished catalytic performance. Furthermore, 10%GdCe/MPB possessed remarkable potential for industrial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2024.04.029DOI Listing

Publication Analysis

Top Keywords

situ drifts
8
unravelling synergistic
4
synergistic effects
4
effects gdce
4
gdce composite
4
composite oxides
4
oxides supported
4
supported biochar
4
biochar catalysts
4
catalysts formaldehyde
4

Similar Publications

Tandem Reaction on Ru/Cu-CHA Catalysts for Ammonia Elimination with Enhanced Activity and Selectivity.

Environ Sci Technol

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Ammonia emissions from vehicles and power plants cause severe environmental issues, including haze pollution and nitrogen deposition. Selective catalytic oxidation (SCO) is a promising technology for ammonia abatement, but current catalysts often struggle with insufficient activity and poor nitrogen selectivity, leading to the formation of secondary pollutants. In this study, we developed a bifunctional Ru/Cu-CHA zeolite catalyst for ammonia oxidation, incorporating both SCO sites (Ru) and selective catalytic reduction sites (SCR, Cu).

View Article and Find Full Text PDF

The development of all-solid-state frustrated Lewis pairs (FLPs) metal-free hydrogenation catalysts with excellent activity and stability remains a significant challenge. In this work, B, N codoped FLPs catalysts (De-rGO-NB) were prepared by the strategy of fabricating carbon defects and heteroatom doping on the surface of reduced graphene oxide and applied in the selective hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols. It was found that electron-rich pyridine-N (Lewis base) and adjacent electron-deficient B-N (Lewis acid) sites could be constructed on the surface of reduced graphene oxide using dicyandiamide and metaboric acid as N and B sources, thus forming FLPs sites.

View Article and Find Full Text PDF

Enhancing the CO Oxidation Performance of Copper by Alloying with Immiscible Tantalum.

ACS Appl Mater Interfaces

January 2025

School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.

Copper-tantalum (Cu-Ta) immiscible alloy nanoparticles (NPs) have been the subject of extensive research in the field of structural materials, due to their exceptional nanostructural stability and high-temperature creep properties. However, Cu is also a highly active oxidation catalyst due to its abundant valence changes. In this study, we have for the first time obtained homogeneous CuTa ( = 0.

View Article and Find Full Text PDF

Effect of cerium-zirconium oxide-loaded red mud on the selective catalytic reduction of NO in downhole diesel vehicle exhaust.

Environ Pollut

January 2025

College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong Province, China; State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China.

Red mud (RM), an iron oxide-rich solid waste, shows potential as a catalyst for selective catalytic reduction in denitrification processes. This study investigates the catalytic performance and mechanism of metal-modified RM in reducing NO from diesel vehicle exhaust. Acid-washed RM catalysts were impregnated with varying ratios of cerium (Ce) and zirconium (Zr).

View Article and Find Full Text PDF

Cu-EAB zeolite catalyst: A promising candidate with excellent SO poisoning resistance for NH-SCR reaction.

J Hazard Mater

January 2025

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China. Electronic address:

In this work, we synthesized Cu-EAB catalysts with an EAB topology for the NH-SCR of NO and evaluated their resistance to SO poisoning for the first time. The Cu-EAB catalyst showed superior NO conversion and selectivity for N, along with a notable tolerance to high space velocities and SO, outperforming the commercial Cu-CHA catalyst. This enhanced resistance was attributed to the Cu species formation at the 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!