Sepsis-induced myocardial injury (SIMI) is a vital pathological component of severe sepsis and septic shock. As a prevalent internal mRNA modification in eukaryotic cells, N6-methyladenosine (m6A) modification is implicated in sepsis and immune disorders. Methyltransferase-like 14 (METTL14), a core subunit of the methyltransferase complex that catalyzes messenger RNA m6A modification, is involved in the regulation of human cardiomyocyte cell line (AC16) injury. This study aimed to explore the role and mechanism of METTL14 in lipopolysaccharide (LPS) -induced myocardial injury.Cell viability and apoptosis were analyzed via 3- (4,5-Dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT), flow cytometry, and TdT-mediated dUTP nick-end labeling (TUNEL) assay. The Tumor necrosis factor alpha (TNF-α) and Interleukin-1beta (IL-1β) levels were analyzed via Enzyme linked immunosorbent assay (ELISA). Caspase-3 activity, reactive oxygen species activity, malondialdehyde level, and glutathione level were assessed using special assay kits. The levels of transient receptor potential melastatin 7 (TRPM7) and METTL14 mRNA were determined via Real-time quantitative polymerase chain reaction (RT-qPCR). Meanwhile, the protein levels of TRPM7, METTL14, phospho-p65 (p-p65), total p65 (p65), p-IκBα, and total IκBα (IκBα) were examined via western blot assay.LPS treatment repressed AC16 cell viability and induced cell apoptosis, inflammatory response, oxidative stress, and ferroptosis in vitro. METTL14 and TRPM7 were upregulated in LPS-treated AC16 cells. At the molecular level, METTL14 could increase the stability of TRPM7 mRNA via m6A methylation. Moreover, METTL14 deficiency could abolish LPS-triggered AC16 cell injury and ferroptosis via TRPM7 regulation.METTL14 knockdown reversed LPS-caused myocardial cell damage mainly by regulating the stability of TRPM7 mRNA, providing a novel therapeutic target for septic cardiomyopathy treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1536/ihj.24-162 | DOI Listing |
Int Heart J
December 2024
Department of Pediatrics, Puren Hospital, Wuhan University of Science and Technology.
Biotechnol J
August 2024
Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
The differentiation of bone marrow mesenchymal stem cells (BMSCs) toward osteogenesis can be induced by low-intensity pulsed ultrasound (LIPUS). However, the molecular mechanisms responsible for LIPUS stimulation are unclear. The possible molecular mechanisms by which LIPUS promotes osteogenic differentiation of BMSCs were investigated in this study.
View Article and Find Full Text PDFCell Physiol Biochem
July 2024
MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan,
Background/aims: Tactile perception relies on mechanoreceptors and nerve fibers, including c-fibers, Aβ-fibers and Aδ-fibers. Schwann cells (SCs) play a crucial role in supporting nerve fibers, with non-myelinating SCs enwrapping c-fibers and myelinating SCs ensheathing Aβ and Aδ fibers. Recent research has unveiled new functions for cutaneous sensory SCs, highlighting the involvement of nociceptive SCs in pain perception and Meissner corpuscle SCs in tactile sensation.
View Article and Find Full Text PDFAltern Ther Health Med
May 2024
Background: Sepsis is a potentially lethal organ immune dysfunction induced by infection, with the stomach being the first organ to be attacked. Emodin has anti-inflammatory and gastrointestinal functions, but its therapeutic effect on intestinal injury in sepsis remains unclear. This study sought to investigate the role of emodin in treating intestine damage brought on by sepsis.
View Article and Find Full Text PDFGenes (Basel)
May 2024
Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!