Numerous studies have confirmed that the apoptosis induced by the methacrylate resin monomers triethyleneglycol-dimethacrylate (TEGDMA), 2-hydroxy ethyl methacrylate (HEMA), etc., in pulp cells and odontoblast-like cells is caused mainly by oxidative stress (OS). Reactive oxygen species (ROS), recognized as the most important risk factor for apoptosis in cells of the pulp-dentin complex, are produced mainly via the mitochondrial respiratory chain. When the free resin monomers in the oral cavity and pulp reach a toxic level, the monomers induce oxidative DNA damage, activate ATM-p53 in the nucleus, and mediate the intrinsic apoptotic pathway in the presence of Bcl-2 family proteins. A vicious cycle is established between OS cellular responses and abnormalities in mitochondrial dynamics that accelerate apoptosis. Despite numerous products generated via iteration, complete polymerization of resin monomers is not currently possible. The cytotoxicity of free monomers may lead to adverse reactions, such as pulp sensitivity. This review is based on the most important papers describing the roles of resin monomers in mediating apoptosis in the pulp-dentin complex and provides an overview of the precise mechanisms related to mitochondrion-mediated cytotoxicity, suggesting ways to reduce or eliminate their cytotoxicity in the future through advancements in material technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2131/jts.49.531 | DOI Listing |
J Sep Sci
January 2025
School of Chemistry and Environment, Southwest Minzu University, Chengdu, China.
Monomer compounds from natural products are the major source of active pharmaceutical molecules, which provide great opportunities for discovering of new drugs. However, natural products contain a large number of rather complex compounds. It is difficult to obtain high-purity monomer compounds from complex natural products.
View Article and Find Full Text PDFSyst Rev
January 2025
Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, Postal Code, 35516, Egypt.
Background: Hydrophilic monomer 2-hydroxyethyl methacrylate (HEMA)-free adhesive systems are gaining increasing popularity nowadays. Although the addition of HEMA to dental adhesives improves dentin wettability and resin diffusion into demineralized collagen fibrils, HEMA's high hydrophilicity can lead to hydrolytic degradation of the adhesive interface. Thus, HEMA-free adhesive systems have been developed.
View Article and Find Full Text PDFFront Chem
January 2025
GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Zamudio, Spain.
Within the context of the circular economy, the transformation of agri-food waste or by-products into valuable products is essential to promoting a transition towards more sustainable and efficient utilisation of resources. Whey is a very abundant by-product of dairy manufacturing. Apart from partial reutilisation in animal feed or some food supplements, the sustainable management and disposal of whey still represent significant environmental challenges.
View Article and Find Full Text PDFChem Sci
January 2025
School of Chemical Engineering and Technology, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University 519082 Zhuhai China.
Traditional photosensitive polyimide (PSPI) materials require a high curing temperature and exhibit low transparency, limiting their applications in thermally sensitive optical devices. To overcome this challenge, soluble photosensitive polyimide resins were synthesized based on the structural design of a bio-based magnolol monomer. It is noteworthy that the PI photoresist, developed by using the as-prepared polyimides and non-toxic solvents (2-acetoxy-1-methoxypropane, PGEMA) and other additives, demonstrated an impressive low-temperature curing performance (180 °C).
View Article and Find Full Text PDFChem Asian J
January 2025
Texas A&M University, Department of Chemistry, UNITED STATES OF AMERICA.
Three new types of Si-centered porous organic polymer (Si-POPs) were successfully prepared using phenolic resin-type chemistry to form C-C bonds. This new family of microporous Si-POPs manifests as uniform, microporous, spherical particles with a high specific surface area. Notably, Si-POPs were engineered to possess varying numbers of hydroxyl (-OH) groups by altering the monomer in the synthetic process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!