Galactose oxidase, produced by fungi of the genus Fusarium, is an enzyme of great biotechnological importance. The gaoA gene has been recombinantly expressed in several hosts but has yet to be in Saccharomyces cerevisiae. This work aimed to express the Fusarium graminearum GaoA enzyme in S. cerevisiae. The full-length and the truncated F. graminearum gaoA gene were subcloned into a yeast expression vector. The GaoA enzyme expression level in S. cerevisiae was higher when the truncated gene, which codes for the mature form of the enzyme, was used. After purification of the expressed enzyme on a Sepharose® 6B column, the obtained yield of the pure and active enzyme was 16.7 mg/L. The purified protein showed a K of 9.8 mM, lower than that of the wild-type enzyme, and a k/K of 2.9 × 10 Ms, higher than that of the wild-type enzyme. The expressed recombinant protein used several common substrates for galactose oxidase, such as galactose, raffinose, and 1,3-dihydroxyacetone dimer. In addition, it had increased activity on guar gum, lactose, and Arabic gum compared with the wild-type enzyme. The obtained enzyme's characteristics are compatible with the galactose oxidase biotechnological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2024.106637DOI Listing

Publication Analysis

Top Keywords

galactose oxidase
16
wild-type enzyme
12
enzyme
9
fusarium graminearum
8
saccharomyces cerevisiae
8
gaoa gene
8
graminearum gaoa
8
gaoa enzyme
8
galactose
5
gaoa
5

Similar Publications

Galactose oxidase oxidation and glycosidase digestion for glycoRNA analysis.

Anal Methods

January 2025

Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.

Ribonucleic acid (RNA), essential for protein production and immune function, undergoes glycosylation, a process that attaches glycans to RNA, generating unique glycoRNAs. These glycan-coated RNA molecules regulate immune responses and may be related to immune disorders. However, studying them is challenging due to RNA's fragility.

View Article and Find Full Text PDF

Though nanozymes are becoming promising alternatives to natural enzymes due to their superior properties, constructing nanozyme with high specificity is still a great challenge. Herein, with Cu2+ as an active site and adenine as a ligand, Adenine-Cu-PO4 is synthesized in phosphate-buffered saline. As an oxidase mimic, Adenine-Cu-PO4 could selectively catalyze oxidation of ascorbic acid (AA) to dehydroascorbic acid, but not universal substrates (3,3',5,5'-tetramethylbenzidine (TMB), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 2,4-dichlorophenol (2,4-DP)), small biomolecules (dopamine, glutathione, glucose, galactose), other vitamins (vitamin A acid, vitamin B1, vitamin K1) and even dithiothreitol (a common interference of AA).

View Article and Find Full Text PDF

Traditional Chinese medicine has a long and illustrious history, and with the development of modern science and technology, the research and application of traditional Chinese medicines have continued to progress significantly. Many traditional Chinese medicinal herbs have undergone scientific validation, reinvigorating with new life and vitality, and contributing unique strengths to the advancement of human health. Recently, the discovery that leech total protein extracted from lyophilized powder reduces blood uric acid (UA) levels by inhibiting the activity of xanthine oxidase to decrease UA synthesis and promotes UA excretion by regulating different UA transporters in the kidney and intestine has undoubtedly injected new vitality and hope into this field of research.

View Article and Find Full Text PDF

Melatonin (MT) can improve plant resistance and fruit quality. The mechanism by which MT affects soluble sugar and organic acids accumulation in drupe fruits is not clear. In this study, 100 µmol/L MT was sprayed on the leaves of plum trees at the second stage of rapid fruit expansion (90 and 97 d after flowering), and the effects of MT on plum fruit quality and its effects on the soluble sugar-organic acid metabolism were investigated.

View Article and Find Full Text PDF

Galactose oxidase (GOase) is a versatile biocatalyst with a wide range of potential applications, ranging from synthetic chemistry to bioelectrochemical devices. Previous GOase engineering by directed evolution generated the M-RQW mutant, with unprecedented new-to-nature oxidation activity at the C6-OH group of glucose, and a mutational backbone that helped to unlock its promiscuity toward other molecules, including secondary alcohols. In the current study, we have used the M-RQW mutant as a starting point to engineer a set of GOases that are very thermostable and that are easily produced at high titers in yeast, enzymes with latent activities applicable to sustainable chemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!