Skorobogatov et al. developed supervised machine learning models to predict diagnoses and illness states in schizophrenia and bipolar disorder. However, their reliance on bootstrap forests and generalized regressions introduces significant biases in feature importance assessments. This paper highlights the critical distinction between feature importances generated by machine learning and actual associations, which are often model-specific and context-dependent. We underscore the limitations of biased feature importances and advocate for the use of robust statistical methods, such as Chi-squared tests and Spearman's correlation, to reveal true associations. Reassessing findings with these methods will enable more accurate interpretations and reinforce the importance of understanding the limitations inherent in machine learning methodologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbi.2024.11.036 | DOI Listing |
Front Biosci (Landmark Ed)
November 2024
Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China.
Background: Aneuploidy is crucial yet under-explored in cancer pathogenesis. Specifically, the involvement of brain expressed X-linked gene 4 () in microtubule formation has been identified as a potential aneuploidy mechanism. Nevertheless, 's comprehensive impact on aneuploidy incidence across different cancer types remains unexplored.
View Article and Find Full Text PDFJACS Au
December 2024
Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, P. R. China.
In this study, we developed a machine-learning-aided protein design strategy for engineering hemoglobin (VHb) as carbene transferase. A Natural Language Processing (NLP) model was used for the first time to construct an algorithm (EESP, enzyme enantioselectivity score predictor) and predict the enantioselectivity of VHb. We identified critical amino acid residue sites by molecular docking and established a simplified mutation library by site-saturated mutagenesis.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China.
Objective: A comprehensive bioinformatics analysis was conducted to investigate potential new diagnostic biomarkers and immune infiltration characteristics associated with tubulointerstitial injury in lupus nephritis (LN), and to examine possible correlations between key genes and infiltrating immune cells.
Methods: The GSE32591, GSE113342, and GSE200306 datasets were downloaded from the Gene Expression Omnibus database and differentially expressed genes (DEGs) were identified in the pooled dataset. Support vector machine-recursive feature elimination analysis and the least absolute shrinkage and selection operator regression model were used to screen for possible markers, and the compositional patterns of the 22 types of immune cell fractions in LN were determined using CIBERSORT.
J Inflamm Res
December 2024
Department of Dermatology, China-Japan Friendship Hospital, National Center for Integrative Medicine, Beijing, 100029, People's Republic of China.
Background: Psoriasis represents a persistent, immune-driven inflammatory condition affecting the skin, characterized by a lack of well-established biologic treatments without adverse events. Consequently, the identification of novel targets and therapeutic agents remains a pressing priority in the field of psoriasis research.
Methods: We collected single-cell RNA sequencing (scRNA-seq) datasets and inferred T cell differentiation trajectories through pseudotime analysis.
Front Cardiovasc Med
December 2024
Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Background: Coronary artery bypass grafting (CABG) surgery has been a widely accepted method for treating coronary artery disease. However, its postoperative complications can have a significant effect on long-term patient outcomes. A retrospective study was conducted to identify before and after surgery that contribute to postoperative stroke in patients undergoing CABG, and to develop predictive models and recommendations for single-factor thresholds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!