A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual-frequency electromagnetic sounding of a Triton ocean from a single flyby. | LitMetric

Dual-frequency electromagnetic sounding of a Triton ocean from a single flyby.

Philos Trans A Math Phys Eng Sci

Applied Physics Laboratory, Johns Hopkins University, MP3-E169, 11100 Johns Hopkins Road, Laurel, MD 20723, USA.

Published: December 2024

Triton, the largest satellite of Neptune, is in a retrograde orbit and is likely a captured Kuiper Belt Object (KBO). Triton has a mean density of only 2.061 gm/cm and is therefore believed to have a 250-400 km thick hydrosphere. Triton is also one of the few planetary satellites to possess a thick ionosphere whose height-integrated Pedersen conductivity exceeds 10 S, complicating the sounding of Triton's subsurface using electromagnetic induction. Triton experiences a time-varying magnetic field dominated by two periods, one at 14.4 h, at the synodic rotation period of Neptune (from Neptune's tilted field) and one at 141 h, at the orbital period of Triton (from large inclination of Triton's orbit). We show that for most models of ionospheric conductivity, the 14.4 h wave creates a large response from the ionosphere itself and is unable to sound the putative ocean below. However, the 141 h wave penetrates the ionosphere easily and provides information on Triton's ocean. We introduce a technique that allows us to determine the complex magnetic moments generated at the two key periods from the magnetic data from a single flyby, allowing us to infer the presence of a subsurface ocean.This article is part of the theme issue 'Magnetometric remote sensing of Earth and planetary oceans'.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2024.0087DOI Listing

Publication Analysis

Top Keywords

single flyby
8
triton
6
dual-frequency electromagnetic
4
electromagnetic sounding
4
sounding triton
4
triton ocean
4
ocean single
4
flyby triton
4
triton largest
4
largest satellite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!