Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Triton, the largest satellite of Neptune, is in a retrograde orbit and is likely a captured Kuiper Belt Object (KBO). Triton has a mean density of only 2.061 gm/cm and is therefore believed to have a 250-400 km thick hydrosphere. Triton is also one of the few planetary satellites to possess a thick ionosphere whose height-integrated Pedersen conductivity exceeds 10 S, complicating the sounding of Triton's subsurface using electromagnetic induction. Triton experiences a time-varying magnetic field dominated by two periods, one at 14.4 h, at the synodic rotation period of Neptune (from Neptune's tilted field) and one at 141 h, at the orbital period of Triton (from large inclination of Triton's orbit). We show that for most models of ionospheric conductivity, the 14.4 h wave creates a large response from the ionosphere itself and is unable to sound the putative ocean below. However, the 141 h wave penetrates the ionosphere easily and provides information on Triton's ocean. We introduce a technique that allows us to determine the complex magnetic moments generated at the two key periods from the magnetic data from a single flyby, allowing us to infer the presence of a subsurface ocean.This article is part of the theme issue 'Magnetometric remote sensing of Earth and planetary oceans'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2024.0087 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!