Valorisation of acid mine drainage: Studying biosorption and bioaccumulation of rare earth elements by seaweeds.

Sci Total Environ

LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.

Published: December 2024

AI Article Synopsis

  • Acid mine drainage (AMD) contains toxic elements that harm the environment, and existing treatment methods generally focus on neutralization without recovering valuable resources like rare earth elements (REEs).
  • This study investigates the potential of three seaweed species (Gracilaria sp., Ulva sp., and Fucus sp.) for removing REEs from AMD, with bioaccumulation proving to be the most effective method, particularly with Gracilaria sp. exhibiting a high capacity for REE uptake.
  • The findings suggest that integrating seaweed-based technologies into traditional passive treatment systems could not only address AMD pollution but also recover valuable materials, highlighting a promising approach for environmental management.

Article Abstract

Acid mine drainage (AMD) nature, persistence and the considerable amount of toxic elements cause significant environmental damage. Traditional passive treatment systems typically focus on neutralizing AMD using limestone and removing common toxic metal(loid)s, and often overlook the recovery of economic and strategic elements (e.g., rare earth elements (REEs)). This study is aimed at assessing for the first time the use of seaweeds to remove REEs from AMD, transforming an environmental problem into a resource. The ability of three seaweed species (Gracilaria sp., Ulva sp., and Fucus sp.) to remove REEs was studied in their dried (biosorption) and living (bioaccumulation) forms. Bioaccumulation was the most efficient process, with Gracilaria and Ulva species showing better performances (75 and 44 %, respectively), also removing over 60 % of Fe. Adjusting the pH of AMD with NaOH successfully separated unwanted elements with minimal REEs loss. After pH adjustment, REEs removal did not improve for either species, except for Dy removal. Seaweed dosage was crucial for a higher REEs removal, with Gracilaria sp. showing a higher bioconcentration factor (up to 1470). FTIR and SEM-EDS analysis identified sulphonate, carboxyl, and alkyne groups as key in binding elements to Gracilaria sp. biomass. Overall, the results demonstrate that seaweed-based biotechnologies are a promising alternative for treating AMD and recovering valuable elements, which can be easily incorporated into the current passive treatment systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.177761DOI Listing

Publication Analysis

Top Keywords

acid mine
8
mine drainage
8
rare earth
8
earth elements
8
passive treatment
8
treatment systems
8
remove rees
8
gracilaria ulva
8
rees removal
8
elements
7

Similar Publications

Background: Hyperuricemia (HUA), a common metabolic disorder associated with gout, renal dysfunction, and systemic inflammation, necessitates safer and more comprehensive therapeutic approaches. Traditional Tibetan medicine has a rich history of treating HUA. This study aimed to identify novel anti-hyperuricemic herb derived from traditional Tibetan medicine.

View Article and Find Full Text PDF

Acid mine drainage (AMD) containing arsenic produced during coal mining is a global environmental problem. However, the coupled driving process of the key element Fe and the associated element As in the AMD environment has received little attention. Therefore, in this study, we investigated the A.

View Article and Find Full Text PDF

Discovery of anticancer peptides from natural and generated sequences using deep learning.

Int J Biol Macromol

December 2024

The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China. Electronic address:

Anticancer peptides (ACPs) demonstrate significant potential in clinical cancer treatment due to their ability to selectively target and kill cancer cells. In recent years, numerous artificial intelligence (AI) algorithms have been developed. However, many predictive methods lack sufficient wet lab validation, thereby constraining the progress of models and impeding the discovery of novel ACPs.

View Article and Find Full Text PDF

Molecular disruptions in microalgae caused by Acidithiobacillus ferrooxidans: Photosynthesis, oxidative stress, and energy metabolism in acid mine drainage.

Water Res

December 2024

School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China. Electronic address:

Microalgae are recognized for their potential in the bioremediation of acid mine drainage (AMD), despite the challenges posed by AMD's low pH, high heavy metal content, and oligotrophic conditions. However, the impact of AMD chemoautotrophic microorganisms on microalgal growth and remediation efforts within AMD has been largely overlooked. This study aims to elucidate the effects the chemoautotrophic microorganism, Acidithiobacillus ferrooxidans, on the growth activity and metabolism of acid-tolerant microalgae, and to explore the molecular mechanisms of microalgal response.

View Article and Find Full Text PDF

Self-crystal electret poly(lactic acid) nanofibers for high-flow air purification and AI-assisted respiratory diagnosis.

J Hazard Mater

December 2024

School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008,  China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China. Electronic address:

Particulate matters (PMs), one of the major airborne pollutants, continue to seriously threaten human health and the environment. Here, a self-crystal-induced electret enhancement (SCIEE) strategy was developed to promote the in-situ electret effect and polarization properties of electrospun poly(L-lactic acid) (PLLA) nanofibers. The strategy specifically involved the elaborate pre-structuring of stereocomplex crystals (SCs) with uniform dimensions (∼300 nm), which were introduced into PLLA electrospinning solution as the electrets and physical cross-linking points of high density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: