Objective: As robot systems for spine surgery have been developed, they have demonstrated a high degree of accuracy in screw placement without sacrificing safety or surgical efficiency. These robotic systems offer preoperative planning and real-time feedback to enhance surgical precision and mitigate human error. Nevertheless, limitations to their optimal performance remain. The authors analyzed the initial 100 cases of pedicle screw placements performed using the Mazor X robot at their institution, presenting case examples to illustrate the limitations that were experienced, and reviewed current literature on the limitations of robot-assisted spine surgery, emphasizing their impact on accuracy and safety.
Methods: This was a retrospective review of the first 100 cases of robot-assisted pedicle screw placement at the authors' institution between December 2019 and June 2024. All intraoperative CT scans were reviewed for screw accuracy. Malpositioned screws, near misses (screw deviation without injury to the patient), or abandoned robot-assisted attempts were identified, and the underlying reasons were evaluated to determine the limitations of current robot technology.
Results: Of the first 100 cases of robot-assisted pedicle screw placement, there were 20 screw-related complications, of which 14 were near misses, 1 involved neurological injury caused by screw malposition, and 5 were cases in which a robot-assisted attempt was abandoned before manual screw placement. The authors identified the following limitations with current robot technology: registration errors, spine movement after registration, patient body habitus, artifact from metallic implants, poor bone differentiation, skiving, soft-tissue interference, and physical constraints.
Conclusions: Despite the advancements of spine robot systems, several limitations persist, especially in mobile or unstable spine locations and around critical structures. The authors' experience, with provided case examples, further illustrates technical nuances important to understanding and navigating around these limitations. The need for standardized reporting metrics to evaluate and classify emerging technologies is highlighted, emphasizing ongoing technological innovation to enhance the efficacy of robot-assisted spine surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2024.9.FOCUS24545 | DOI Listing |
J Neurosurg Spine
January 2025
1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and.
Objective: Mixed-reality (MR) applications provide opportunities for technical rehearsal, education, and estimation of surgical performance without the risk of patient harm. In this study, the authors provide a structured literature review on the current state of MR applications and their effects on neurosurgery training. They also introduce an MR prototype for neurosurgical spine training.
View Article and Find Full Text PDFGlobal Spine J
January 2025
Department of orthopaedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
Brain Spine
December 2024
Department of Neurosurgery, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
Introduction: The role of low-pathogenic bacteria cultured from removed spinal implants is unclear and the efficacy of perioperative single-dose antibiotics against such bacteria remains underexplored.
Research Question: This study aims to investigate whether pedicle screw loosening is associated with pathogens and if the choice of perioperative antibiotics can prevent these bacteria.
Methods: A retrospective analysis was conducted on 93 patients with implants removed between 01/01/2018 and 03/31/2020.
Front Bioeng Biotechnol
December 2024
Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
Objective: In the current study, to demonstrate the advantages of oblique lateral interbody fusion (OLIF), we focused on the therapeutics for lumbar spinal tuberculosis with the comparison of three treatments, including anterior approach, posterior approach, and OLIF combined with posterior percutaneous pedicle screw fixation.
Methods: This study included patients with lumbar spinal tuberculosis from July 2015 to June 2018. We divided these patients into three groups: 35 patients underwent an anterior-only approach (Group A), 36 patients underwent a posterior-only approach (Group B), and 31 patients underwent OLIF combined with posterior percutaneous pedicle screw fixation (Group C).
J Orthop Surg Res
December 2024
Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
Objective: This study aims to explore the predictive value of endplate morphology and pedicle screw bone quality score on screw loosening after single-level lumbar spinal fusion surgery.
Methods: A retrospective analysis was conducted on the clinical data of 207 patients who underwent single-level lumbar spinal fusion (34 in the screw loosening group and 173 in the non-screw loosening group). Univariate analysis and binary logistic regression model analysis were performed using SPSS 27.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!