People with a history of injecting drug use are a priority for eliminating blood-borne viruses and sexually transmissible infections. Identifying them for disease surveillance in electronic medical records (EMRs) is challenged by sparsity of predictors. This study introduced a novel approach to phenotype people who have injected drugs using structured EMR data and interactive human-in-the-loop methods. We iteratively trained random forest classifiers removing important features and adding new positive labels each time. The initial model achieved 92.7% precision and 93.5% recall. Models maintained >90% precision and recall after nine iterations, revealing combinations of less obvious features influencing predictions. Applied to approximately 1.7 million patients, the final model identified 128,704 (7.7%) patients as potentially having injected drugs, beyond the 50,510 (2.9%) with known indicators of injecting drug use. This process produced explainable models that revealed otherwise hidden combinations of predictors, offering an adaptive approach to addressing the inherent challenge of inconsistently missing data in EMRs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608217 | PMC |
http://dx.doi.org/10.1038/s41746-024-01318-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!