A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting cortical-thalamic functional connectivity using functional near-infrared spectroscopy and graph convolutional networks. | LitMetric

Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical structures, such as the thalamus, which is involved in several key functional networks. To address this drawback, we propose a machine-learning-based approach to predict cortical-thalamic functional connectivity using cortical fNIRS data. We applied graph convolutional networks (GCN) to two datasets obtained from healthy adults and neonates with early brain injuries, respectively. Each dataset contained fNIRS connectivity data as input to the predictive models, while the connectivity from functional magnetic resonance imaging (fMRI) served as training targets. GCN models performed better compared to conventional methods, such as support vector machine and feedforward fully connected artificial neural networks, on both identifying the connections as binary classification tasks, and regressing the quantified strengths of connections. We also propose the addition of inter-subject connections into the GCN kernels could improve performance and that GCN models are resilient to noise in fNIRS data. Our results show it is feasible to identify subcortical activity from cortical fNIRS recordings. The findings can potentially extend the use of fNIRS in clinical settings for brain monitoring in critically ill patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608255PMC
http://dx.doi.org/10.1038/s41598-024-79390-3DOI Listing

Publication Analysis

Top Keywords

cortical-thalamic functional
8
functional connectivity
8
connectivity functional
8
functional near-infrared
8
near-infrared spectroscopy
8
graph convolutional
8
convolutional networks
8
cortical fnirs
8
fnirs data
8
gcn models
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!