Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical structures, such as the thalamus, which is involved in several key functional networks. To address this drawback, we propose a machine-learning-based approach to predict cortical-thalamic functional connectivity using cortical fNIRS data. We applied graph convolutional networks (GCN) to two datasets obtained from healthy adults and neonates with early brain injuries, respectively. Each dataset contained fNIRS connectivity data as input to the predictive models, while the connectivity from functional magnetic resonance imaging (fMRI) served as training targets. GCN models performed better compared to conventional methods, such as support vector machine and feedforward fully connected artificial neural networks, on both identifying the connections as binary classification tasks, and regressing the quantified strengths of connections. We also propose the addition of inter-subject connections into the GCN kernels could improve performance and that GCN models are resilient to noise in fNIRS data. Our results show it is feasible to identify subcortical activity from cortical fNIRS recordings. The findings can potentially extend the use of fNIRS in clinical settings for brain monitoring in critically ill patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608255 | PMC |
http://dx.doi.org/10.1038/s41598-024-79390-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!