Most angiosperm plants recognise the 22-residue flagellin (flg22) epitope in bacterial flagellin via homologs of cell surface receptor FLS2 (flagellin sensitive-2) and mount pattern-triggered immune responses. However, flg22 is buried within the flagellin protein indicating that proteases might be required for flg22 release. Here, we demonstrate the extracellular subtilase SBT5.2 not only releases flg22, but also inactivates the immunogenicity of flagellin and flg22 by cleaving within the flg22 epitope, consistent with previous reports that flg22 is unstable in the apoplast. The prolonged lifetime of flg22 in sbt5.2 mutant plants results in increased bacterial immunity in priming assays, indicating that SBT5.2 counterbalances flagellin immunogenicity to provide spatial-temporal control and restrict costly immune responses and that bacteria take advantage of the host proteolytic machinery to avoid detection by flagellin having a protease-sensitive flg22 epitope.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608315 | PMC |
http://dx.doi.org/10.1038/s41467-024-54790-1 | DOI Listing |
Cell Rep
December 2024
Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA; Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA. Electronic address:
Plant roots grow in association with a community of microorganisms collectively known as the rhizosphere microbiome. Immune activation in response to elicitors like the flagellin-derived epitope flg22 restricts bacteria on plant roots but also inhibits plant growth. Some commensal root-associated bacteria are capable of suppressing the plant immune response to elicitors.
View Article and Find Full Text PDFNat Commun
November 2024
The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK.
Most angiosperm plants recognise the 22-residue flagellin (flg22) epitope in bacterial flagellin via homologs of cell surface receptor FLS2 (flagellin sensitive-2) and mount pattern-triggered immune responses. However, flg22 is buried within the flagellin protein indicating that proteases might be required for flg22 release. Here, we demonstrate the extracellular subtilase SBT5.
View Article and Find Full Text PDFMol Plant Pathol
October 2024
Department of Plant Pathology, University of California, Davis, Davis, California, USA.
bioRxiv
August 2024
Department of Plant Pathology, University of California, Davis, Davis, CA, USA.
Nat Commun
May 2024
Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
Plants initiate specific defense responses by recognizing conserved epitope peptides within the flagellin proteins derived from bacteria. Proteolytic cleavage of epitope peptides from flagellin by plant apoplastic proteases is thought to be crucial for the perception of the epitope by the plant receptor. However, the identity of the plant proteases involved in this process remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!