The development and implementation of microbial chassis cells have profound impacts on circular economy. Non-model bacterium Zymomonas mobilis is an excellent chassis owing to its extraordinary industrial characteristics. Here, the genome-scale metabolic model iZM516 is improved and updated by integrating enzyme constraints to simulate the dynamics of flux distribution and guide pathway design. We show that the innate dominant ethanol pathway of Z. mobilis restricts the titer and rate of these biochemicals. A dominant-metabolism compromised intermediate-chassis (DMCI) strategy is then developed through introducing low toxicity but cofactor imbalanced 2,3-butanediol pathway, and a recombinant D-lactate producer is constructed to produce more than 140.92 g/L and 104.6 g/L D-lactate (yield > 0.97 g/g) from glucose and corncob residue hydrolysate, respectively. Additionally, techno-economic analysis (TEA) and life cycle assessment (LCA) demonstrate the commercialization feasibility and greenhouse gas reduction capability of lignocellulosic D-lactate. This work thus establishes a paradigm for engineering recalcitrant microorganisms as biorefinery chassis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608335 | PMC |
http://dx.doi.org/10.1038/s41467-024-54897-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!