Electrochemistry-glucosemeter-smartphone integrated multi-mode biosensor for accurate detection of aflatoxin B1.

Anal Chim Acta

College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China. Electronic address:

Published: January 2025

Background: Aflatoxin B1 (AFB1) is a widely distributed toxic contaminant in food and poses a serious threat to public health. Therefore, an accurate, simple, cost-effective and on-site assay method is needed for sensitive detection of AFB1. Aptamer shows great potential in the construction of biosensor due to its high specificity and affinity. Multimodal biosensor based on aptamer is highly suitable for the analysis of AFB1 under complex conditions. And the detection results in different modes can be verified with each other, which greatly improves the accuracy of AFB1 detection.

Results: Herein, accurate detection of AFB1 was achieved through the development of a multi-mode biosensor integrating electrochemistry, glucosemeter and smartphone-based colorimetric quantification. Streptavidin-Cu(PO) hybrid nanoflowers (SA-Cu(PO) HNFs) were synthesised and then conjugated with biotinylated invertase as a signal probe. The electrochemical signal was achieved via intrinsic redox activity. Simultaneously, sucrose could be converted to glucose by the action of invertase, which can cause changes in the glucosemeter signal as well as in the colour of urine glucose test strips. The glucosemeter could complete the signal response in 7 s, and the urine glucose test strips could complete the colour development in 30 s. The detection range of AFB1 by this system in electrochemical mode is 0.001-100 ng/mL, and in glucosemeter mode and smartphone mode is 0.01-50 ng/mL. The limits of detection were 0.49 pg/mL in electrochemistry mode, 5.4 pg/mL in glucosemeter mode and 3.7 pg/mL in smartphone mode.

Significance: The successful construction of this multi-mode biosensor demonstrates the advantages of multifunctional nanomaterials and mobile technology. Rapid and accurate detection of AFB1 is achieved through the integration of electrochemistry, glucosemeter and smartphone-based colorimetric quantification. And this biosensor provides a novel detection platform that combines sensitivity, accuracy, affordability and portability for rapid on-site food safety screening.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.343398DOI Listing

Publication Analysis

Top Keywords

multi-mode biosensor
12
accurate detection
12
detection afb1
12
detection
8
afb1 achieved
8
electrochemistry glucosemeter
8
glucosemeter smartphone-based
8
smartphone-based colorimetric
8
colorimetric quantification
8
urine glucose
8

Similar Publications

Electrochemistry-glucosemeter-smartphone integrated multi-mode biosensor for accurate detection of aflatoxin B1.

Anal Chim Acta

January 2025

College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China. Electronic address:

Background: Aflatoxin B1 (AFB1) is a widely distributed toxic contaminant in food and poses a serious threat to public health. Therefore, an accurate, simple, cost-effective and on-site assay method is needed for sensitive detection of AFB1. Aptamer shows great potential in the construction of biosensor due to its high specificity and affinity.

View Article and Find Full Text PDF

Nanozymes, a category of nanomaterials with exceptional enzyme-like activity, exhibit the significant promise to overcome the inherent limitations of natural enzymes. Inspired by the active site structure of natural laccase, a biomimetic MA-Cu nanozyme with three-dimensional network structure was constructed in water system through one-step complexation based on the specific coordination between nitrogen-rich triazine heterocyclic melamine and Cu, in a facile, green and economical manner. Compared to natural laccase, MA-Cu possesses superior multi-enzyme mimicking activity, stability and cost-effectiveness.

View Article and Find Full Text PDF

Aptamer-based tri-mode sensing for detecting oxytetracycline mediated by SYBR Green I and functionalized Au nanoparticles.

Biosens Bioelectron

February 2025

Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China.

Exploiting multi-mode aptamer sensing approaches for target pollutants is urgently required to meet the multi-scene detection requirements and improve the accuracy of detection. Herein, we developed a novel aptamer-based tri-mode sensing for detecting oxytetracycline (OTC). First, OTC can induce the conformational changes of the aptamer, which can promote the formation of duplex structures of the aptamer.

View Article and Find Full Text PDF

miR-135a is highly expressed in patients with gestational diabetes mellitus, and its target genes are also involved in insulin signaling pathway, so it is one biomarker for gestational diabetes mellitus. Herein we designed a dual-mode DNA biosensor for reliable assay of miR-135a based on the fluorescence and colorimetric signals. Several experiments were carried out to demonstrate the assay feasibility and mechanism for this dual-mode DNA biosensor.

View Article and Find Full Text PDF

Infections caused by Vibrio parahaemolyticus (V. parahaemolyticus) can be highly fatal, making rapid and sensitive detection of them is essential. A new optical fiber biosensor based on localized surface plasmon resonance (LSPR) phenomenon is developed in this paper.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!