Bronchopulmonary dysplasia (BPD), a chronic lung disease in preterm infants, is associated with inflammation and high oxygen exposure. However, the effects of antenatal inflammation and postnatal extended hyperoxia on the metabolome and microbiome remain unclear. In this study, pregnant rats received lipopolysaccharide or saline injections on gestational day 20 and were exposed to either 21 % or 80 % oxygen for 4 weeks post-birth. Analysis revealed an increase in Firmicutes, Proteobacteria, and Actinobacteria, with a decrease in Bacteroidetes in BPD rats. Metabolomic analysis identified 78 altered metabolites, primarily lipids, enriched in pathways including arginine biosynthesis, sphingolipid metabolism, and primary bile acid biosynthesis in BPD rats. Integration analysis revealed strong correlations between intestinal microbiota and metabolites in BPD rats. These findings underscored the impact of antenatal inflammation and prolonged postnatal hyperoxia on gut microbiota and serum metabolome, suggesting their role in BPD pathogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygeno.2024.110969 | DOI Listing |
Cells
December 2024
Division of Neonatology, Department of Pediatrics, Batchelor Children Research Institute, University of Miami School of Medicine, Miami, FL 33136, USA.
Extremely premature infants are at significant risk for developing bronchopulmonary dysplasia (BPD) and neurodevelopmental impairment (NDI). Although BPD is a predictor of poor neurodevelopmental outcomes, it is currently unknown how BPD contributes to brain injury and long-term NDI in pre-term infants. Extracellular vesicles (EVs) are small, membrane-bound structures released from cells into the surrounding environment.
View Article and Find Full Text PDFRespir Res
December 2024
Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Backgroud: Recent studies have reported mitochondrial damage and metabolic dysregulation in BPD, but the changes in mitochondrial dynamics and glucose metabolic reprogramming in ATII cells and their regulatory relationship have not been reported.
Methods: Neonatal rats in this study were divided into model (FIO2:85%) and control (FIO2: 21%) groups. Lung tissues were extracted at 3, 7, 10 and 14 postnatal days and then conducted HE staining for histopathological observation.
Pediatr Int
December 2024
Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan.
Background: Clinical studies have shown that diffuse chorioamniotic hemosiderosis (DCH) is a risk factor for bronchopulmonary dysplasia (BPD). However, the details of the underlying mechanism are unknown. We focused on iron, one of the blood components that diffuses within the amniotic cavity in DCH.
View Article and Find Full Text PDFGenomics
November 2024
Institute of Medical Artificial Intelligence, Binzhou Medical College, Yantai 264003, Shandong, PR China. Electronic address:
BMC Neurosci
November 2024
Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.
Purpose: Lung injury associated with bronchopulmonary dysplasia (BPD) and its related neurodevelopmental disorders have garnered increasing attention in the context of premature infants. Establishing a reliable animal model is essential for delving into the underlying mechanisms of these conditions.
Methods: Newborn rats were randomly assigned to two groups: the hyperoxia-induced BPD group and the normoxia (NO) group.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!