Background: Pyropheophorbide-α methyl ester-mediated photodynamic therapy(MPPa-PDT) is a candidate treatment for solid tumors, including osteosarcoma. Pyroptosis has garnered significant attention in cancer research due to its pro-inflammatory and immunomodulatory nature. This study investigated the mechanism and role of MPPa-PDT-induced pyroptosis in osteosarcoma cells.
Methods: We treated human osteosarcoma 143b and HOS cells with MPPa at concentrations of 0.5 μM and 0.25 μM, respectively, then irradiated the cells with LED light at 630 nm wavelength with an energy density of 4.8 J/cm. Cell viability and apoptosis ratio were detected using CCK-8 and Annexin V-Propidium Iodide staining, respectively. Intracellular reactive oxygen species (ROS) levels and mitochondrial membrane potential (MtΔψ) were assessed using 2',7'-Dichlorofluorescin diacetate, and JC-1 staining kits, respectively. Scanning Electron Microscopy (SEM) was utilized to examine cell ultrastructure. The morphological changes of the cells were observed by an inverted microscope. Western blotting analysis was conducted to measure protein levels. To elucidate the mechanism and role, we re-evaluated relevant parameters after pretreating with NAC,Si caspase-3, and Si GSDME.
Results: MPPa-PDT inhibited the activity of osteosarcoma 143b and HOS cells and induced pyroptosis with mitochondrial damage, ROS aggregation, and activation of Caspase-3 and GSDME. The effects of MPPa-PDT on the activity and apoptosis of osteosarcoma cells were partially reversed after pretreating with Si GSDME. After NAC pretreatment, the activation of pyroptosis and Caspase-3 induced by MPPa-PDT was partially reversed. After Si Caspase-3 pretreatment, the pyroptosis induced by MPPa-PDT was partially reversed.
Conclusion: MPPa-PDT can induce pyroptosis in osteosarcoma cells, which has the effect of enhancing apoptotic processes. Mitochondrial damage and ROS/caspase-3/GSDME pathway are the possible mechanisms of pyroptosis induced by MPPa-PDT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pdpdt.2024.104427 | DOI Listing |
Adv Mater
December 2024
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
The precise manipulation of PANoptosis, a newly defined cell death pathway encompassing pyroptosis, apoptosis, and necroptosis, is highly desired to achieve safer cancer immunotherapy with tumor-specific inflammatory responses and minimal side effects. Nonetheless, this objective remains a formidable challenge. Herein, an "AND" logic-gated strategy for accurately localized PANoptosis activation, utilizing composite 3D-printed bioactive glasses scaffolds integrated with epigenetic regulator-loaded porous piezoelectric SrTiO nanoparticles is proposed.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2024
Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Yuzhong, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China. Electronic address:
Background: Pyropheophorbide-α methyl ester-mediated photodynamic therapy(MPPa-PDT) is a candidate treatment for solid tumors, including osteosarcoma. Pyroptosis has garnered significant attention in cancer research due to its pro-inflammatory and immunomodulatory nature. This study investigated the mechanism and role of MPPa-PDT-induced pyroptosis in osteosarcoma cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
Pyroptosis has gained attention for its potential to reinvigorate the immune system within the tumor microenvironment. However, current approaches employing pyroptosis inducers suffer from limitations. They primarily rely on single agents, lack precise targeting, and potentially disrupt the intricate bone formation microenvironment, hindering local repair of tumor-induced bone defects.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
Cisplatin, a frontline chemotherapeutic agent against cancer, faces challenges in clinical application due to significant toxicities and suboptimal efficacy. Renal toxicity, a dose-limiting factor of cisplatin, results from multifactorial processes including cisplatin-induced cellular pyroptosis, oxidative damage, and inflammatory responses. Our findings reveal that Tea Polyphenols Nanoparticles (TPNs) derived from Epigallocatechin gallate (EGCG) effectively could address these diverse mechanisms, comprehensively alleviating cisplatin-induced nephrotoxicity.
View Article and Find Full Text PDFProtein Cell
September 2024
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!