Pyropheophorbide-α methyl ester-mediated photodynamic therapy triggers pyroptosis in osteosarcoma cells via the ROS/caspase-3/GSDME pathway.

Photodiagnosis Photodyn Ther

Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Yuzhong, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China. Electronic address:

Published: December 2024

Background: Pyropheophorbide-α methyl ester-mediated photodynamic therapy(MPPa-PDT) is a candidate treatment for solid tumors, including osteosarcoma. Pyroptosis has garnered significant attention in cancer research due to its pro-inflammatory and immunomodulatory nature. This study investigated the mechanism and role of MPPa-PDT-induced pyroptosis in osteosarcoma cells.

Methods: We treated human osteosarcoma 143b and HOS cells with MPPa at concentrations of 0.5 μM and 0.25 μM, respectively, then irradiated the cells with LED light at 630 nm wavelength with an energy density of 4.8 J/cm. Cell viability and apoptosis ratio were detected using CCK-8 and Annexin V-Propidium Iodide staining, respectively. Intracellular reactive oxygen species (ROS) levels and mitochondrial membrane potential (MtΔψ) were assessed using 2',7'-Dichlorofluorescin diacetate, and JC-1 staining kits, respectively. Scanning Electron Microscopy (SEM) was utilized to examine cell ultrastructure. The morphological changes of the cells were observed by an inverted microscope. Western blotting analysis was conducted to measure protein levels. To elucidate the mechanism and role, we re-evaluated relevant parameters after pretreating with NAC,Si caspase-3, and Si GSDME.

Results: MPPa-PDT inhibited the activity of osteosarcoma 143b and HOS cells and induced pyroptosis with mitochondrial damage, ROS aggregation, and activation of Caspase-3 and GSDME. The effects of MPPa-PDT on the activity and apoptosis of osteosarcoma cells were partially reversed after pretreating with Si GSDME. After NAC pretreatment, the activation of pyroptosis and Caspase-3 induced by MPPa-PDT was partially reversed. After Si Caspase-3 pretreatment, the pyroptosis induced by MPPa-PDT was partially reversed.

Conclusion: MPPa-PDT can induce pyroptosis in osteosarcoma cells, which has the effect of enhancing apoptotic processes. Mitochondrial damage and ROS/caspase-3/GSDME pathway are the possible mechanisms of pyroptosis induced by MPPa-PDT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pdpdt.2024.104427DOI Listing

Publication Analysis

Top Keywords

pyroptosis osteosarcoma
12
osteosarcoma cells
12
induced mppa-pdt
12
pyropheophorbide-α methyl
8
methyl ester-mediated
8
ester-mediated photodynamic
8
pyroptosis
8
ros/caspase-3/gsdme pathway
8
mechanism role
8
osteosarcoma 143b
8

Similar Publications

The precise manipulation of PANoptosis, a newly defined cell death pathway encompassing pyroptosis, apoptosis, and necroptosis, is highly desired to achieve safer cancer immunotherapy with tumor-specific inflammatory responses and minimal side effects. Nonetheless, this objective remains a formidable challenge. Herein, an "AND" logic-gated strategy for accurately localized PANoptosis activation, utilizing composite 3D-printed bioactive glasses scaffolds integrated with epigenetic regulator-loaded porous piezoelectric SrTiO nanoparticles is proposed.

View Article and Find Full Text PDF

Pyropheophorbide-α methyl ester-mediated photodynamic therapy triggers pyroptosis in osteosarcoma cells via the ROS/caspase-3/GSDME pathway.

Photodiagnosis Photodyn Ther

December 2024

Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Yuzhong, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China. Electronic address:

Background: Pyropheophorbide-α methyl ester-mediated photodynamic therapy(MPPa-PDT) is a candidate treatment for solid tumors, including osteosarcoma. Pyroptosis has garnered significant attention in cancer research due to its pro-inflammatory and immunomodulatory nature. This study investigated the mechanism and role of MPPa-PDT-induced pyroptosis in osteosarcoma cells.

View Article and Find Full Text PDF

Pyroptosis has gained attention for its potential to reinvigorate the immune system within the tumor microenvironment. However, current approaches employing pyroptosis inducers suffer from limitations. They primarily rely on single agents, lack precise targeting, and potentially disrupt the intricate bone formation microenvironment, hindering local repair of tumor-induced bone defects.

View Article and Find Full Text PDF

Cisplatin, a frontline chemotherapeutic agent against cancer, faces challenges in clinical application due to significant toxicities and suboptimal efficacy. Renal toxicity, a dose-limiting factor of cisplatin, results from multifactorial processes including cisplatin-induced cellular pyroptosis, oxidative damage, and inflammatory responses. Our findings reveal that Tea Polyphenols Nanoparticles (TPNs) derived from Epigallocatechin gallate (EGCG) effectively could address these diverse mechanisms, comprehensively alleviating cisplatin-induced nephrotoxicity.

View Article and Find Full Text PDF

ER membrane remodeling by targeting RTN4 induces pyroptosis to facilitate antitumor immune.

Protein Cell

September 2024

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Article Synopsis
  • Pyroptosis is a type of programmed cell death closely connected to changes in the endoplasmic reticulum (ER) membrane, but the key proteins involved in this process are not well known.
  • Researchers developed a chemical probe called α-mangostin (α-MG), which targets the protein reticulon-4 (RTN4), essential for regulating ER shape.
  • The study found that reducing RTN4 levels enhances pyroptosis in cancer cells and could lead to promising strategies for cancer treatment and immunotherapy, as high RTN4 levels are linked to tumor growth and patient mortality.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!