Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aquaculture water with antibiotic resistance genes (ARGs) is escalating due to the horizontal gene transfer. Non-antibiotic stressors specifically found, including those from fishery feed and disinfectants, are potential co-selectors. However, the mechanisms underlying this process remains unclear. Intragenus and intergenus conjugative transfer systems of the antibiotic-resistant plasmid RP4 were established to examine conjugative transfer frequency under exposure to five widely used non-antibiotic factors in aquaculture water: iodine, oxolinic acid, NO-N, NO-N and HO and four different recipient bacteria: E. coli HB101, Citrobacter portucalensis SG1, Vibrio harveyi and Vibrio alginolyticus. The study found that low concentrations of non-antibiotic factors significantly promoted conjugative transfer, whereas high concentrations inhibited it. Moreover, the conjugation transfer efficiencies were significantly different with different bacterial species within (E. coli HB101 ∼ 10 %) or cross genera (C. portucalensis SG1 ∼10 %, V. harveyi ∼1 %). Besides, excessive exposure concentrations inhibited the expression of related genes and the generation of reactive oxygen species (ROS). Regulation of multiple related genes and ROS-induced SOS responses are common primary mechanisms. However, the mechanisms of non-antibiotic factors differ from those of standard antibiotics, with direct changes in cell membrane permeability potentially playing a dominant role. Additionally, variations among non-antibiotic factors and the specific characteristics of bacterial species contribute to differences in conjugation mechanisms. Notably, this study found that non-antibiotic factors could increase the frequency of intergeneric conjugation beyond that of intrageneric conjugation. Furthermore, non-antibiotic factors influenced by multiple transport systems may raise the risk of unintended cross-resistance, significantly amplifying the potential for resistance gene spread. This study underscores the significance of non-antibiotic factors in the propagation of ARGs, highlighting their role in advancing aquaculture development and protecting human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.136701 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!