Upcycling solid waste into advanced adsorbents is a sustainable approach in the field of waste valorization and wastewater treatment. In this study, we developed a phase-controlled synthesis method for a single phase of an aluminum-based metal-organic framework (MOF) using an aluminum source (Al) in red mud (RM), and demonstrated its potential for aqueous perfluorooctanoic acid (PFOA) removal. By optimizing the pre-treatment process, the selective extraction of aluminum ion from RM was achieved. Subsequently, three distinct aluminum-based MOFs (i.e., MIL-53(Al), MIL-96(Al), and MIL-100(Al)) were synthesized by controlling the hydrothermal synthesis conditions and using specific organic linkers (terephthalic acid and trimesic acid). For MOFs based on trimesic acid, the initial Al: trimesic acid ratio and duration of hydrothermal synthesis exerted an observable influence on the formation of the second building unit of the MOF. By manipulating these factors, we could precisely control isolated MIL-96(Al) and MIL-100(Al). The PFOA adsorption results revealed a remarkable increase in the adsorption capacity (Q: 131.58 mg/g) on MIL-100(Al) compared with that on MIL-96(Al). This was due to its large surface area (1189.15 m/g) and the presence of numerous hydrophilic sites favorable for interaction with the carboxylic group of PFOA. Furthermore, a computational investigation revealed that in addition to direct Lewis acid-base interaction between PFOA and aluminum sites, the major mechanism involved the formation of a complex induced by ion exchange between coordinated NO and PFOA anions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.136687 | DOI Listing |
Nanomaterials (Basel)
December 2024
Unidad Departamental de Química Analítica, Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Spain.
Arsenic contamination of water endangers the health of millions of people worldwide, affecting certain countries and regions with especial severity. Interest in the use of Fe-based metal organic frameworks (MOFs) to remove inorganic arsenic species has increased due to their stability and adsorptive properties. In this study, the performance of a synthesized Nano-{Fe-BTC} MOF, containing iron oxide octahedral chains connected by trimesic acid linkers, in adsorbing As(III) and As(V) species was investigated and compared with commercial BasoliteF300 MOF.
View Article and Find Full Text PDFJ Fluoresc
January 2025
College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China.
The identification of ClO and iron ions in water medium is a difficult task and has been one of the hot issues in analytical chemistry. For this objective, we synthesized carbon nanoparticles (CNPs) through a solvothermal reaction between 1, 3, 5-trimesic acid and o-phenylenediamine, which served as a sequential fluorescent probe for ClO and Fe ions. The obtained CNPs were spherical particles with a diameter of 26.
View Article and Find Full Text PDFTalanta
December 2024
Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 of 13th Street, TEDA, Tianjin, 300457, PR China. Electronic address:
The residues of organophosphorus pesticides (OPs) in food pose a huge threat to human health. Therefore, the development of detection methods with simple design and high sensitivity is urgently needed. Here, a colorimetric/chemiluminescence (CL) dual-mode aptasensor strategy with high selectivity and sensitivity for detecting Parathion-methyl (PM) was designed based on aptamer-regulated nanozyme activity.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Electronic address:
Mater Horiz
November 2024
School of Physics and Engineering, ITMO University, Saint Petersburg, 191002, Russia.
The design of fast, endurant, and biocompatible porous frameworks with solvatochromism, aimed to addressing the multiple visual sensing of chemicals, still remains a challenge. Here, we report on a solvatochromic metal-organic framework (MOF) based on cobalt and trimesic acid. We examined its solvatochromism through the solvent exchange and revealed high selectivity to water/dimethylformamide combination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!