Adsorption-enhanced Fenton catalytic membrane for high-efficiency, high-quality drinking water treatment.

J Hazard Mater

State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, PR China.

Published: November 2024

To efficiently remove micropollutants from drinking water, this study developed an adsorption-enhanced Fenton catalytic membrane with a two-dimensional structure composed of graphene oxide loaded with iron-cyclodextrin metal-organic frameworks (FeCD-MOF). As water passes through the interlayer channels, micropollutants and hydrogen peroxide (HO) are adsorbed into the voids of the FeCD-MOF and the cavities of the CD. This process increases the concentration of micropollutants and HO in the confined space, thereby significantly enhancing the efficiency of the Fenton catalytic reaction. Under a constant flux of 90 L/mh and influent concentrations of 10 mg/L bisphenol A (BPA) and 3 mM HO, the membrane consistently maintained over 97.4 % BPA removal for 72 h. FeCD-MOF's excellent adsorption properties also enhance the stability of the treated water quality. Even with sudden increases in micropollutant concentration or interruptions in oxidant supply, the membrane maintained over 89.7 % BPA removal for an extended period solely through its adsorption capacity. Experimental results demonstrate that the membrane effectively removes various micropollutants, performs stably across a wide pH range, and resists interference from natural organic matter and ions, making it highly promising for drinking water treatment. Furthermore, compared to other MOF materials, FeCD-MOF has a significantly lower cost, enhancing its practicality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.136632DOI Listing

Publication Analysis

Top Keywords

fenton catalytic
12
drinking water
12
adsorption-enhanced fenton
8
catalytic membrane
8
water treatment
8
bpa removal
8
membrane
5
water
5
membrane high-efficiency
4
high-efficiency high-quality
4

Similar Publications

BiWO@CuO-GO bio-heterojunction spray for accelerating chronic diabetic wound repairment with bilaterally enhanced sono-catalysis and glycolytic inhibition antisepsis.

Biomaterials

December 2024

Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, PR China. Electronic address:

Chronic diabetic wound poses a pressing global healthcare challenge, necessitating an approach to address issues such as pathogenic bacteria elimination, blood sugar regulation, and angiogenesis stimulation. Herein, we engineered a BiWO@CuO-GOx bio-heterojunction (BWCG bio-HJ) with exceptional cascade catalytic performance and impressive sonosensitivity to remodel the wound microenvironment and expedite the diabetic wound healing. Specifically, the Z-scheme junctions of BiWO@CuO significantly augmented carrier separation dynamics, leading to the highly efficient generation of reactive oxygen species (ROS) upon US irradiations.

View Article and Find Full Text PDF

Enhancing Ferroptosis-Mediated Radiosensitization Synergistic Disulfidptosis Induction.

ACS Nano

December 2024

Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P.R. China.

Ferroptosis plays an important role in radiotherapy (RT), and the induction of ferroptosis can effectively sensitize radiotherapy. However, the therapeutic efficiency is always affected by ferroptosis resistance, especially SLC7A11 (Solute Carrier Family 7 Member 11)-cystine-cysteine-GSH (glutathione)-GPX4 (glutathione peroxidase 4) pathway-mediated resistance. In this study, tumor-microenvironment self-activated high-Z element-containing nanoferroptosis inducers, PEGylated Fe-Bi-SS metal-organic frameworks (FBSP MOFs), were developed to sensitize RT.

View Article and Find Full Text PDF

Magnesium Oxide-Supported Single Atoms with Fine-Modulated Steric Location for Polymerization Transfer Removal of Water Pollutants.

Environ Sci Technol

December 2024

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China.

Organic pollutants removal via a polymerization transfer (PT) pathway based on the use of single-atom catalysts (SACs) promises efficient water purification with minimal energy/chemical inputs. However, the precise engineering of such catalytic systems toward PT decontamination is still challenging, and the conventional SACs are plagued by low structural stability of carbon material support. Here, we adopted magnesium oxide (MgO) as a structurally stable alternative for loading single copper (Cu) atoms to drive peroxymonosulfate-based Fenton-like reactions.

View Article and Find Full Text PDF

The discovery of nanozymes has opened new possibilities for tumor therapy. However, their reliance on the tumor microenvironment and limited catalytic efficiency hinder broader applications. In this study, ruthenium-phenanthroline nanoparticles (Ru-Phs) are synthesized by combining ruthenium with phenanthroline and subsequently coloaded with the proton pump inhibitor (PPI) pantoprazole into sodium alginate (ALG) to form a Ru-Phs-PPI-ALG hydrogel for in situ tumor therapy.

View Article and Find Full Text PDF

Mass-fraction-optimized heterojunction composites featuring precisely engineered interfaces and mesoporous structures are crucial for improving light absorption, minimizing electron-hole recombination, and boosting overall catalytic efficiency. Herein, highly efficient mesoporous-NiFe2O4@g-C3N4 heterojunctions were developed by embedding p-type NiFe2O4 nanoparticles (NPs) within n-type porous ultrathin g-C3N4 (p-uCN) nanosheets. The optimized NiFe2O4@g-C3N4, loaded with 20wt% magnetic counterparts, exhibits exceptional photocatalytic methylene blue degradation, achieving the highest performance in both photocatalytic and photo-Fenton processes with rate constants of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!