VIPR1 can specifically bind VIP, a PRL release factor, which promotes the secretion of PRL from the pituitary gland, and participates in the regulation of bird nesting behavior. The purpose of this study was to investigate the effects of miR-317 overexpression or silencing on VIPR1 gene and protein expression in duck follicle granulosa cells. The ovaries of Muscovy ducks were collected during the nesting and laying periods, and histological differences were analyzed via HE staining. Duck primary follicle granulosa cells were isolated and identified by immunofluorescence staining, after which the cells were transfected with miR-317, mimic-NC, miR-317 mimic, inhibitor-NC or miR-317 inhibitor Alterations in cell proliferation were then analyzed by EdU staining, and cell apoptosis was assessed by Annexin-V-FITC flow cytometry and TUNEL staining. Fluorescence quantitative PCR was used to assess the expression level of VIPR1 after miR-317 overexpression or silencing. Total protein was extracted from the follicle granulosa cells, and protein levels were analyzed via Western blotting. The results revealed that the nucleus of the ovarian granule in Muscovy ducks was more concentrated and distinct from the surrounding cells during the brooding period than during the laying period. More than 90 % of the cells were identified as duck follicle granulosa cells by immunofluorescence staining of FSHR and LHR. miR-317 expression was significantly higher in the miR-317 mimic-transfected group than in the miRNA-NC-transfected group (P < 0.01); similarly, miR-317 expression was significantly lower in the inhibitor-transfected group than in the miRNA inhibitor-transfected group (P < 0.01), indicating that miR-317 overexpression and interference vectors were successfully constructed and transfected into duck follicular granulosa cells. EdU staining revealed that the number of EdU-positive cells was significantly greater in the miR-317 mimic-transfected group than in the mimic-NC-transfected group (P < 0.05); after miR-317 silencing or inhibition, cell proliferation decreased, and the number of EdU-positive cells significantly decreased (P < 0.01). TUNEL staining revealed that the proportion of red, TUNEL-positive cells in the miR-317 inhibitor interference group was significantly greater than that in the miR-NC, miR-317 mimic, or inhibitor-NC group (P < 0.05). These results suggest that miR-317 inhibition promoted the apoptosis of duck follicle granulosa cells. Flow cytometry revealed that the percentage of apoptotic cells was 14.23 % and 22.75 % in the inhibitor-NC and miR-317 inhibitor groups, respectively (P < 0.01). Fluorescence quantitative PCR revealed that, compared with that in the corresponding control groups, VIPR1 gene expression was significantly lower in the miR-317 mimic group (P < 0.05) but significantly higher in the miR-317 inhibitor group (P < 0.05). Western blot analysis revealed that VIPR1 levels were significantly lower in the miR-317 mimic group than in the mimic-NC group (P < 0.05) but significantly greater in the miR-317 inhibitor group (P < 0.05). In summary, miR-317 inhibition promoted the apoptosis of duck follicle granulosa cells, and miR-317 overexpression promoted the proliferation of duck follicle granulosa cells and negatively regulated expression of the target gene VIPR1 at the gene and protein levels. This study further reveals the molecular mechanism underlying follicular atresia and serves as a reference for reducing the broodiness of Muscovy ducks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648758PMC
http://dx.doi.org/10.1016/j.psj.2024.104588DOI Listing

Publication Analysis

Top Keywords

granulosa cells
36
follicle granulosa
32
duck follicle
24
group 005
24
mir-317
22
mir-317 inhibitor
20
cells
16
mir-317 overexpression
16
mir-317 mimic
16
group
13

Similar Publications

Diabetes mellitus (DM) causes numerous systemic diseases in animals and humans. This may also lead to reproductive problems among individuals of reproductive age. Detrimental effects such as apoptosis in ovarian granulosa cells, degradation of communication proteins, decreased oocyte quality, delayed meiotic maturation, and atrophy are among the increasing evidence that chronic hyperglycemia causes reproductive problems.

View Article and Find Full Text PDF

Gengnianchun Against HO-Induced Oxidative Damage in KGN Cells via miR-548m/FOXO3 Signaling.

J Cell Biochem

January 2025

Department of Integrated Traditional Chinese Medicine and Western Medicine, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.

Gengnianchun (GNC) is a traditional remedy used for diminished ovarian reserve, but its underlying mechanisms remain unclear. This study aimed to explore these mechanisms in human granulosa-like cancer (KGN) cells pretreated with medicated rat serum (MRS) before HO exposure. MRS pretreatment significantly alleviated HO-induced cell damage, including improvements in cell viability, superoxide dismutase and GSH-Px activities, and Bcl-2 expression.

View Article and Find Full Text PDF

Network pharmacology uncovers that secoisolariciresinol diglucoside ameliorate premature ovarian insufficiency via PI3K/Akt pathway.

Sci Rep

January 2025

School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China.

As one of the essential lignan derivative found in traditional Chinese medicinal herbs, secoisolariciresinol diglucoside (SDG) was proved to promote women's health through its phytoestrogenic properties. Increasingly studies indicated that this compound could be a potential drug capable of preventing estrogen-related diseases. Here, we aimed to investigate whether SDG can counteract cyclophosphamide (CTX) induced premature ovarian insufficiency (POI) and further explore its specific molecular mechanism.

View Article and Find Full Text PDF

We hypothesized that human chorionic gonadotropic (hCG) could replace LH in the maturation media for buffalo oocytes, and hCG administration before ovum pick-up (OPU) enhances in-vitro development of buffalo oocytes. Objectives were 1) to investigate the effect of hCG supplementation on nuclear maturation, oocyte development, and granulosa cell mRNA abundance of genes related to growth and antioxidant pathways and 2) to determine the effect of hCG administration before OPU on in-vitro oocyte development. In Experiment 1, buffalo oocytes retrieved from slaughterhouse ovaries were maturated in the media supplemented with 0.

View Article and Find Full Text PDF

Forkhead box L2 (FOXL2) encodes a transcription factor essential for sex determination, and ovary development and maintenance. Mutations in this gene are implicated in syndromes involving premature ovarian failure and granulosa cell tumors (GCTs). This rare cancer accounts for less than 5% of diagnosed ovarian cancers and is causally associated with the FOXL2 c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!