Mechanism of selectivity filter constriction in potassium channel: Insights from high-throughput steered molecular dynamics simulations.

Biochem Biophys Res Commun

Department of Mechanics, College of Architecture & Environment, & Failure Mechanics and Engineering Disaster Prevention, Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610065, China. Electronic address:

Published: December 2024

Potassium channels are essential for regulating cellular excitability by controlling K ion flow. In voltage-gated potassium (Kv) channels, C-type inactivation modulates action potentials and holds significant physiological and clinical importance. The selectivity filter (SF) of potassium channels functions as the C-type inactivation gate by alternating between conductive and non-conductive states. The bacterial KcsA potassium channel, characterized by well-defined structural features, serves as an ideal model for investigating this mechanism through molecular dynamics (MD) simulations. However, limitations in computational power and the time scales of C-type inactivation, which extend up to seconds, have constrained a comprehensive understanding of this process. This study used high-throughput steered molecular dynamics (SMD) simulations, employing a knowledge-based acceleration strategy, to capture spontaneous SF constriction within nanoseconds in KcsA. Over a thousand SMD simulations recorded hundreds of SF constriction events, revealing a common constriction mechanism driven by an ion occupancy switch from state 13 to state 14 within the SF, facilitated by water molecules located behind the SF. Simulations of the E71V-mutated KcsA suggest that this constricted state and mechanism may also extend to Kv-like channels, albeit with reduced water dependence. These findings underscore the essential roles of ions and water molecules in regulating protein dynamics and highlight strategies for high-throughput MD studies to further explore protein dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.151054DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
12
potassium channels
12
c-type inactivation
12
selectivity filter
8
potassium channel
8
high-throughput steered
8
steered molecular
8
dynamics simulations
8
smd simulations
8
water molecules
8

Similar Publications

Small Molecular Oligopeptides Adorned with Tryptophan Residues as Potent Antitumor Agents: Design, Synthesis, Bioactivity Assay, Computational Prediction, and Experimental Validation.

J Chem Inf Model

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.

Tryptophan participates in important life activities and is involved in various metabolic processes. The indole and aromatic binuclear ring structure in tryptophan can engage in diverse interactions, including π-π, π-alkyl, hydrogen bonding, cation-π, and CH-π interactions with other side chains and protein targets. These interactions offer extensive opportunities for drug development.

View Article and Find Full Text PDF

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Black phosphorus (BP), a promising two-dimensional material, faces significant challenges for its applications due to its instability in air and water. Herein, molecular dynamics simulations reveal that a self-assembled ferrocene (FeCp) molecular layer can form on BP surfaces and remain stable in aqueous environments, predicting its effectiveness for passivation. This theoretical finding is corroborated by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and optical microscopy observations.

View Article and Find Full Text PDF

Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.

View Article and Find Full Text PDF

Influence of CTAB Reverse Micellar Confinement on the Tetrahedral Structure of Liquid Water.

J Phys Chem B

January 2025

Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India.

The effect of confinement on the tetrahedral ordering of liquid water plays a vital role in controlling their microscopic structure and dynamics as well as their spectroscopic properties. In this article, we have performed the classical molecular dynamics simulations of four different CTAB/water/chloroform reverse micelles with varied water content to study how the tetrahedral ordering of nanoscale water inside reverse micellar confinement influences the microscopic dynamics and the structural relaxation of water···water hydrogen bonds and its impact on the low-frequency intermolecular vibrational bands. We have noticed from the results obtained from simulated trajectories the lowering trends of tetrahedral ordering of water pools in reverse micellar confinements as we move from bulk to confined and strictly confined environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!