Deciphering relationships between sulfate-reducing bacteria (SRB) and other microorganisms is crucial for stable operation of anaerobic digestion systems when treating sulfate-containing wastewater. However, few studies have differentiated the incomplete oxidizing SRB (IO-SRB) and complete oxidizing SRB (CO-SRB) in anaerobic digestion ecosystems. Four ethanol-fed bioreactors were operated under two operational modes (sequencing batch reactor, SBR; and continuous-flow reactor, CFR) and two chemical oxygen demand (COD) to sulfate ratios (1 and 2) to systematically explore strategies for enriching IO-SRB and/or CO-SRB and their microbial interactions with other microorganisms. Compared to SBRs, CFRs could enhance sulfate removal and demonstrated higher microbial activities in sulfate and ethanol degradation. IO-SRB competed with ethanol oxidizing bacteria in all reactors, and IO-SRB's contribution to ethanol degradation increased from 62.9 %-67.1 % to 69.0 %-82.1 % as the COD/sulfate ratio decreased from 2 to 1. Moreover, CO-SRB competed acetotrophic methanogens exclusively in CFRs, as CO-SRB could not be efficiently enriched in SBRs. Low COD/sulfate ratios facilitated the enrichment of Desulfococcus (CO-SRB), and the CFR operational mode further strengthened its enrichment. Additionally, hydrogenotrophic SRB outperformed hydrogenotrophic methanogens in all four reactors. In general, IO-SRB and CO-SRB possessed distinct microbial interactions with methanogens, with potential syntrophic relationships between IO-SRB and acetotrophic methanogens while competitive relationships between CO-SRB and acetotrophic methanogens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122842DOI Listing

Publication Analysis

Top Keywords

microbial interactions
12
anaerobic digestion
12
acetotrophic methanogens
12
strategies enriching
8
sulfate-reducing bacteria
8
digestion ecosystems
8
oxidizing srb
8
ethanol degradation
8
co-srb
7
io-srb
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!