A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Protective effects of sulfated polysaccharides from Enteromorpha intestinalis on oxidative stress, liver iron overload and Ferroptosis in Zebra fish exposed to ethanol. | LitMetric

AI Article Synopsis

  • The study explores the protective effects of sulfated polysaccharides from Enteromorpha intestinalis (EIP) on liver damage in zebrafish subjected to ethanol exposure, simulating alcohol-related liver disease (ALD).
  • Zebrafish were tested in three groups: control, ethanol-exposed, and ethanol-exposed with EIP supplementation, over a 30-day period, measuring various oxidative stress and liver health indicators.
  • Results indicated that EIP supplementation significantly reduced liver damage by lowering oxidative stress and iron accumulation, improving antioxidant activity, and altering gene expressions related to ferroptosis, suggesting potential for future treatments for ALD.

Article Abstract

The study investigates the protective effects of sulfated polysaccharides extracted from Enteromorpha intestinalis (EIP) against oxidative stress, liver iron overload, and ferroptosis in zebrafish exposed to ethanol, a model for alcohol-related liver disease (ALD). The extracted polysaccharides were characterized for sulfate and sugar content, molecular weight, and functional groups. Adult male zebrafish were divided into three groups: control, ethanol-exposed (EE) (0.2 % ethanol (v/v) in the water), and ethanol-exposed with EIP supplementation (1 % EIP incorporated into the basal diet) (EE+EIP) for 30 days. The study measured liver oxidative stress indexes, serum enzymological indexes, liver and serum lipid profiles, liver iron ion content, and expression of ferroptosis-related genes. Histological analysis was conducted to assess lipid accumulation and iron deposition in liver tissues. The findings indicate that EIP supplementation significantly mitigates ethanol-induced liver damage. Specifically, EIP reduced malondialdehyde levels, increased antioxidant enzyme and non-enzymatic antioxidant activity, and decreased iron ion accumulation and the area of iron granules in the liver tissue. Additionally, EIP treatment lowered lipids levels and aminotransferase enzyme activity in the serum. In the ALD model, EIP inhibited ethanol-induced ferroptosis by modulating the expression of key genes: it decreased the expression of transferrin (tf), transferrin receptor (tfr), ferroportin (fpn), and ferritin heavy chain (fth), while increasing the expression of glutathione peroxidase 4 (gpx4) and solute carrier family 7 member 11 (slc7a11). EIP has protective effects against ethanol-induced liver injury in zebrafish, offering a foundation for further research into its hepatoprotective action and potential application in preventing and treating ALD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.117715DOI Listing

Publication Analysis

Top Keywords

protective effects
12
oxidative stress
12
liver iron
12
liver
10
effects sulfated
8
sulfated polysaccharides
8
enteromorpha intestinalis
8
stress liver
8
iron overload
8
overload ferroptosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!