The application of solid oxide electrolysis cells (SOECs) for high-temperature CO reduction reaction (CORR) is constrained by the electrochemical activity and stability of the cathode materials. In this study, a series of iron-based perovskite oxides, designed by systematically varying A-site configurational entropy, are investigated as cathode materials for the CORR. Experimental results reveal that these high-entropy materials, derived from LaSrFeO (LSF), exhibit high electrocatalytic activity and durability. Notably, the SOEC with LaSrPrBaCaFeO (LSPBCF) cathode achieves a remarkable current density of 2.14 A cm at 800 °C and 1.5 V, maintaining excellent stability over 120 h of operation with negligible fluctuations. Density functional theory (DFT) calculations further unveil the electronic structure modulation mechanism of the high-entropy material, revealing that A-site entropy engineering could enhance CO adsorption and activation by reducing the oxygen vacancy formation energy. This study underscores the potential of entropy engineering to improve the electrocatalytic performance and stability of other energy conversion systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.11.161 | DOI Listing |
J Neurodev Disord
January 2025
Graduate Neuroscience Program, University of California, Riverside, CA, USA.
Background: Fragile X syndrome (FXS) is a leading known genetic cause of intellectual disability and autism spectrum disorders (ASD)-associated behaviors. A consistent and debilitating phenotype of FXS is auditory hypersensitivity that may lead to delayed language and high anxiety. Consistent with findings in FXS human studies, the mouse model of FXS, the Fmr1 knock out (KO) mouse, shows auditory hypersensitivity and temporal processing deficits.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK.
This research presents a straightforward and economically efficient design for a microbial fuel cell (MFC) that can be conveniently integrated into a borehole to monitor natural attenuation in groundwater. The design employs conventional, transparent, and reusable PVC bailers with graphite tape and granular activated carbon to create high surface area electrodes. These electrodes are connected across redox environments in nested boreholes through a wire and variable resistor setup.
View Article and Find Full Text PDFChemSusChem
January 2025
Washington State University, School of Mechanical and Materials Engineering, PO Box 642920, 99164-2920, Pullman, UNITED STATES OF AMERICA.
Advancement of sulfur (S) cathode of lithium-sulfur (Li-S) batteries is hindered by issues such as insulating nature of sulfur, sluggish redox kinetics, polysulfide dissolution and shuttling. To address these issues, we initiate a study on applying an important amino acid of protein, arginine (Arg), as a functional additive into S cathodes. Based on our simulation study, the positively charged Arg facilitates strong interactions with polysulfides.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada. Electronic address:
Copper hexacyanoferrate (CuHCF) demonstrates high working voltage, convenient synthesis methods, and economic benefits. However, capacity decay of CuHCF//Zn full cells is usually observed in aqueous electrolytes due to the dissolution of Cu and Fe, as indicated by the irreversible insertion of Zn ions and the consequent formation of ZnCuHCF. To address these challenges, a cathode-oriented electrolyte engineering design employing a methyl acetate (MA) co-solvent with zinc triflate (Zn(OTf)) salt electrolyte is implemented.
View Article and Find Full Text PDFDrug Alcohol Depend
December 2024
Department of Psychiatry, University of Florida, Gainesville, FL, USA. Electronic address:
Tobacco use disorder is a chronic disorder that affects more than one billion people worldwide and causes the death of millions each year. The rewarding properties of nicotine are critical for the initiation of smoking. Previous research has shown that the activation of glucocorticoid receptors (GRs) plays a role in nicotine self-administration in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!