Circularly polarized light emission from encapsulated aggregation-induced emission achiral luminogen within the supramolecular helical nanofilament networks.

J Colloid Interface Sci

Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea; Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea. Electronic address:

Published: November 2024

AI Article Synopsis

  • Circularly polarized light emission (CPLE) materials are gaining interest for applications in areas like spintronics.
  • The study demonstrates a new method for activating CPLE in achiral luminogens by utilizing phase separation with helical filaments, which enhances their properties.
  • The chiral environment created by nanoscale spaces allows the helical filaments to impart chirality to the otherwise CPLE-inactive luminogens, making this approach a simpler alternative to complex chemical synthesis.

Article Abstract

Circularly polarized light emission (CPLE) materials have attracted considerable attention owing to their broad range of potential applications, including spintronics. In this study, we introduce an innovative approach to impart CPLE activity to achiral aggregation-induced emission luminogens (AIEgens) by leveraging the nanoscale spontaneous phase separation between rod-like AIEgens and helical filaments formed by bent-core molecules. This phase separation was confirmed by transmittance analysis, X-ray diffraction, and other techniques as supported by transmission electron microscopy. Intrinsically, CPLE-inactive AIEgens aggregate in nanosized spaces, isolated from the helical filament network, and become CPLE-active via chirality transfer from the helical filaments. Thus, CPLE emission was achieved from the AIEgens encapsulated within the supramolecular helical nanofilament networks. The CPLE properties were significantly influenced by the size of the nanospace occupied by the AIEgens between the helical filament networks, as evaluated using scanning electron microscopy. This nanospace created a chiral environment, allowing the chirality of the helical filaments to transfer to the AIEgens during aggregation, rendering them CPLE-active. This study presents a universal strategy for fabricating CPLE materials without the need for complex chemical synthesis or the molecular design of luminogens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.11.190DOI Listing

Publication Analysis

Top Keywords

helical filaments
12
circularly polarized
8
polarized light
8
light emission
8
aggregation-induced emission
8
supramolecular helical
8
helical nanofilament
8
nanofilament networks
8
cple materials
8
phase separation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!