An updated review on SARS-CoV-2 in hospital wastewater: occurrence and persistence.

Environ Monit Assess

Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.

Published: November 2024

SARS-CoV-2, primarily affecting the respiratory system, is also found in fecal samples from COVID-19 patients, demonstrating wastewater as a significant route for viral RNA transmission. During high prevalence periods, healthcare facility wastewater became a potential contamination source. Understanding the role of wastewater in epidemiology is crucial for public health risk assessment. In hospitals, with a specific number of COVID-19 cases, wastewater analysis offers a unique opportunity to link virus presence in wastewater with COVID-19 hospitalizations, a connection that is not possible in urban wastewater treatment plants (WWTPs). Shorter wastewater transit times enable more accurate virus tracking. With documented infection rates and rigorous testing, hospitals are ideal for wastewater monitoring, revealing practicalities and limitations. This review updates global efforts in quantifying SARS-CoV-2 in hospital wastewater, considering hospitalization rates' influence on viral RNA levels and comparing disinfection methods. Insights gleaned from this study contribute to Wastewater-based Epidemiology (WBE) and can be applied to other virus strains, enhancing our understanding of disease transmission dynamics and aiding in public health response strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-024-13464-7DOI Listing

Publication Analysis

Top Keywords

wastewater
10
sars-cov-2 hospital
8
hospital wastewater
8
viral rna
8
public health
8
updated review
4
review sars-cov-2
4
wastewater occurrence
4
occurrence persistence
4
persistence sars-cov-2
4

Similar Publications

Magnetic Carbon Bead-Based Concentration Method for SARS-CoV-2 Detection in Wastewater.

Food Environ Virol

December 2024

Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan.

Wastewater surveillance for pathogens is important to monitor disease trends within communities and maintain public health; thus, a quick and reliable protocol is needed to quantify pathogens present in wastewater. In this study, a method using a commercially available magnetic carbon bead-based kit, i.e.

View Article and Find Full Text PDF

Development of a microbiome for phenolic metabolism based on a domestication approach from lab to industrial application.

Commun Biol

December 2024

Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

Despite a lot of efforts devoted to construct efficient microbiomes, there are still major obstacles to moving from the lab to industrial applications due to the inapplicability of existing technologies or limited understanding of microbiome variation regularity. Here we show a domestication strategy to cultivate an effciient and resilient functional microbiome for addressing phenolic wastewater challenges, which involves directional domestication in shaker, laboratory water test in small-scale, gas test in pilot scale, water test in pilot scale, and engineering application in industrial scale. The domestication process includes the transition from water to gas, which provided complex transient environment for screening of a more adaptable and robust microbiome, thereby mitigating the performance disparities encountered when transitioning from laboratory experimentation to industrial engineering applications.

View Article and Find Full Text PDF

Dye-laden wastewater poses a significant environmental and health threat. This study investigated the potential of green-synthesized zinc oxide nanoparticles (ZnO NPs), derived from Padina pavonica brown algae extract, for the removal of methylene blue (MB) dye. The hypothesis was that utilizing algal extract for ZnO NP synthesis would enhance adsorption capacity and photocatalytic activity for dye removal.

View Article and Find Full Text PDF

Contribution of the microbial community to operational stability in an anammox reactor: Neutral theory and functional redundancy perspectives.

Bioresour Technol

December 2024

School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea. Electronic address:

A comprehensive understanding of microbial assembly is essential for achieving stable performance in biological wastewater treatment. Nevertheless, few studies have quantified these phenomena in detail, particularly in anammox-based processes. This study integrated mathematical and microbial approaches to analyze a 330-day anammox reactor with stable nitrogen removal efficiency (97 - 99%) despite changes in the high nitrogen loading rate, nitrogen concentration, and hydraulic retention time.

View Article and Find Full Text PDF

Lignin-based nano-mimetic enzymes have emerged as a promising approach for wastewater remediation, addressing the limitations of conventional treatment methods. This review article explores the potential of lignin, a renewable biomaterial, in developing these novel enzyme-inspired systems. The introduction highlights the rising pollution levels, stricter environmental regulations, and the need for innovative wastewater treatment technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!